Universitat des Saarlandes
Department Informatik
Computer Linguistics

Span extraction based slot-filling using
attention and RNNs

Seminar Paper

Dialogue processing for human-robot collaboration

Pavle Markovi¢, Sangeet Sagar
Matr.Nr. 7007913, 7009050
{pama00002, sasa00001}@stud.uni-saarland.de

April 29, 2022

Span extraction based slot-filling using attention and RNNs

Abstract

In this work, we attempt to perform slot-filling using a recurrent neural network
(RNN) model based on a multi-head attention mechanism. The model considers
both user’s utterance and slot type in determining the slot value. The attention
mechanism aids in capturing key components in the dialogue related to the slot
type. We compare our results to other recent state-of-the-art models based on the
F1 score.

Contents
1 Introduction 2
2 Model 2
2.1 Context Encoder 2
2.2 Multi-head attention 3
2.3 RNN . s, 3
3 Dataset 4
4 Experiment 4
5 Results and Discussion 5
6 Conclusion and Future work 6
Bibliography7

Pavle Markovié, Sangeet Sagar

1 Introduction

Spoken language understanding (SLU) involves identifying two key components in
a human-machine dialogue system to predict response to a human utterance: iden-
tifying the user’s intent and identifying constituent parts from the user’s utterance
concerning the intent. In this work, we will focus on the latter. In the following
utterance where a user wishes to perform booking at a restaurant: There will be 5
adults and 1 child, the user’s intent is “restaurant reservation”, and this intent is
identified by the value 5 adults and 1 child whose slot type is people. Therefore,
we are attempting to perform slot-filling where the goal is to fill in appropriate
values for a slot.

Slot filling is a key component of the spoken dialogue system (SDS). This can
be treated as a token-level sequence labeling task where given an input sequence:
X = (X1, Xy, -+, Xy) of a specific slot type: slot, the goal is to label each token in
the sequence with a value Yot = (Ylot Yot ... 'y 3lot) - Generative models like
Hidden Markov Models [3] with the Viterbi algorithm are conventional approaches
to predicting the most likely tags of a given sequence of words. More recent
approaches to this use conditional random fields (CRFs), which happens to be a
variant of the Markov network, performs this elegantly. With the advancement of
neural-based methods like recurrent neural networks (RNNs), when integrated with
more recent attention mechanisms [2]| such tasks have achieved a drastic increase
in performance [10].

In modular systems, slot filling (and intent detection) is either preceding com-
ponent or a sub-component of the dialogue state tracking (DST) thus vital for
properly modelling context. We approach this task as a value (span) extraction.
In our work we use BERT [5] to encode slot and SpanBERT [8] to encode user’s
utterance and perform slot-filling using multi-headed attention-based RNN. Our
approach to multi-head attention is inspired from [11]. Rather than overload-
ing the decoder with the entire input sequence, the attention mechanism helps
identify the most important constituent words in a dialogue that should concern
a dialogue system when slot filling. Multi-head attention uses a self-attention
layer multiple times in parallel, leading to a performance boost. This is the key
motivation for our work. We use the Restaurant8K dataset [4] to perform our
experiments and evaluate our results on. Our code is open-sourced and can be
found on https://github.com/sangeet2020/dialogue-processing.

2 Model

2.1 Context Encoder

The key observation that we found in our literature review [4] was that proposed
work did not take into account slot type for which value is to be found. In a produc-
tion system, this information should be available from system’s action (dialogue
management would produce a dialogue act with slots for which system expects

Span extraction based slot-filling using attention and RNNs

values from a user). Our hypothesis is that such information could help system
improve performance and extract corresponding values better.

Inspired by the paper we presented in the seminar [9], we decided to use BERT
based encoders for our inputs (a user’s utterance and a slot type). First, WordPiece
tokenizer is used to tokenize both the slot type and the user’s utterance. Next, the
tokenized slot type is input into the BERT encoder to obtain summarized repre-
sentation of the slot type (as in [9], output vector of [CLS] token is taken). On the
other hand, since we modelled the task as a span extraction, it seemed appropriate
to use SpanBERT [8] to encode the user’s utterance (again as in [9], output token
vectors are taken). After obtaining contextualised vector representations for our
inputs, the multi-head attention is applied (described in the following subsection).

2.2 Multi-head attention

The simplistic self-attention mechanism computes a context-aware embedding vec-
tor for each input. However, this does not involve any learnable parameters. Multi-
head attention mechanism uses three learnable weight parameters for query, key
and value (different for every self-attention layer) that are multiplied with the in-
put sequence of embeddings (in our case, these will be encoded context vectors).
This allows attending to different parts in a sequence differently.

In our work, we use the multi-head attention as proposed in [11]. The input to
our multi-head attention layer, i.e. query (Q) is the encoded slot-vector Qy and
for key (@) and value (V') is encoded utterance vector Q. It further performs
scaled-dot product attention (A) using these inputs that give a h linear projections
stacked over one another, where A is the number of heads.

A(Q, K, V) = Softmax (QET) (1)

where /dj, is a scaling factor given by dimension of encoded context vector divided
by number of heads. These are then concatenated and fed through linear layer to
obtain the final output. These attention weights are combined with the encoded
utterance vector to form the input to RNN discussed in next section.

2.3 RNN

The next step is to perform span extraction which was done through sequence
tagging. The BIO format was used for this purpose, so each input token is tagged
with B, T and O tags. B and I indicate beginning and inside of slot’s value span,
while O indicates outside of slot-span. In the Table 2 an example of the tagged
user’s utterance can be found. Lastly, additional P tag was used to tag PAD
tokens.

Actual tagging process is performed using RNN mechanism, more specifically
the LSTM [7]. In each time step, an LSTM cell receives the hidden state and cell
state from the previous time step, the current time step token and the output of

Pavle Markovié, Sangeet Sagar

the multi-head attention. The current token and the attention outputs are first
concatenated, then put through a linear layer and Sigmoid activation function to
make more compact input for the LSTM cell. Finally, the output of the LSTM
cell is sent through a Layer Normalization [1] (following [9]), and the final result
is a predicted BIO tag.

3 Dataset

We use the Restaurant8K dataset to train our slot-filling model and evaluate our
results. It consists of 8198 user utterances and 5 unique slot types. The dataset
consists of requests and queries related to the restaurant domain. A total of 2975
utterances lacked any labels, and most of them accompanied multiple labels. We
perform our experiments and compare results both inclusive and exclusive of these
non-labeled utterances to determine if the model learns to predict from non-labeled
utterances. To simplify our experiments, we cloned each example utterance to its
number of labels, i.e. an example with three labels were cloned thrice and mapped
each to one label. We had 7635 examples in the train set and 3477 examples in
the test set. Slot distribution can be seen in the Table 1

Slot type No. of utt.

people 2164

date 1721

time 1972
first_.name 887
last_name 891

Table 1: Slot distribution on training data

Utterance | There | will | be | 5 | adults | and | 1 | child.
BIO format O O |0 |B I I I I
Slot type people
Slot Value 5 adults and 1 child.

Table 2: Training example with slot type and value

4 Experiment

For our experiments, we used BERTpasr model (12 layers with 768 hidden units)
for tokenization, slot-type encoding and as a underline model for SpanBERT.
Multi-head attention is further applied where the query is slot vector, while keys

4

Span extraction based slot-filling using attention and RNNs

and values are utterance vectors. Our multi-head configuration employs 8 heads
with 768 hidden units. We train a single-layered LSTM model with 512 input
units and 100 hidden units and specify a dropout probability of 0.1. We use Adam
optimizer with a learning rate of 10~° and cross-entropy loss function for the model
training for 10 epochs

Initially, we trained the model on only labeled utterances and later extended
to all examples inclusive of non-labelled utterances. We report the mean precision,
recall and F1 score for each model type in Section 5. We also report slot-specific F1
scores to analyze how well the model captures slot value information for different
slots types.

5 Results and Discussion

The achieved results per slots are shown in the Table 3, while summarized results
over all slots, compared to other models, are presented in the Table 4. For eval-
uation, we followed [4] and calculated F1 score (the weighted average of Precision
and Recall).

First of all, it can be observed that time slot is the least challenging one due to
small values variety. On the other hand, the most challenging slots are first_name
and last_name, where the score for the last name is considerably lower (35.33 for
last_name compared to 67.36 for first_name). This might suggest that our model is
more incline towards first_name when it spot a name value. Also, number of values
per these two slots are at least twice smaller compared to other slots (see Table
1). Given that values for these two slots are the most diverse, it is reasonable
to assume that more examples are required. It is encouraging that the score for
people slot is somewhat decent (74.78) given diversity of possible values (from a
single number (e.g. 5) to wordy sequence (e.g. 1 adult and 4 children). Lastly,
except for the first_name slot, there is no significant difference between results for
all utterances and only labelled ones used for training.

Unfortunately, our model underperformed compared to previously proposed
models. One of the reasons for that might be the selected sequence tagging mech-
anism. Our model relies on the RNN architecture, while all others on the Con-
ditional Random Fields (CRF). In addition to that, we employed multi-headed
attention mechanism, thus, it might be that there is no a sufficient number of
training examples to properly parametrize these two mechanisms.

Pavle Markovié, Sangeet Sagar

Slot type All utts Only labelled utts

people 74.78 74.88
date 86.22 85.93

time 98.24 96.68
first_name 67.36 49.48
last_name 35.33 35.95

Table 3: Slot specific F'1 scores on test set with model trained on all utterances and
when trained on only labeled utterances

Model F1

Span-ConveRT[4] 96
V-ONN-CRF [4] 94
Span-BERT [4] 93
Our model 83

Table 4: Mean F1 scores comparison

6 Conclusion and Future work

We have implemented a slot-filling model based on [9] and [4] papers. The main
idea was to model the slot-filling task as a span extraction and to utilize available
information about slot type for which value is to be provided. Although our result
did not match results of previously proposed models, we believe there are space to
improve our approach to possibly match those. For the future work, other sequence
tagging mechanisms should be explored (e.g. CRF are used by other models).
Furthermore, the Span-ConveRT model uses ConveRT model [6] for encoding input
which is specifically trained for better representation of conversational utterances.
It would be interesting to apply such model for our approach as well.

Span extraction based slot-filling using attention and RNNs

References

[1]

2]

[10]

[11]

Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization.

ArXiv, abs/1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural ma-
chine translation by jointly learning to align and translate. arXiv preprint
arXw:1409.0473, 2014.

Leonard E. Baum and Ted Petrie. Statistical Inference for Probabilistic Func-
tions of Finite State Markov Chains. The Annals of Mathematical Statistics,
37(6):1554 — 1563, 1966.

Sam Coope, Tyler Farghly, Daniela Gerz, Ivan Vulic, and Matthew Henderson.
Span-convert: Few-shot span extraction for dialog with pretrained conversa-
tional representations. CoRR, abs/2005.08866, 2020.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:
pre-training of deep bidirectional transformers for language understanding.
CoRR, abs/1810.04805, 2018.

Matthew Henderson, Inigo Casanueva, Nikola Mrkvsi’c, Pei hao Su, Tsung-
Hsien, and Ivan Vulic. Convert: Efficient and accurate conversational repre-
sentations from transformers. ArXiv, abs/1911.03688, 2020.

Sepp Hochreiter and Jirgen Schmidhuber. Long short-term memory. 9(8),
1997.

Mandar Joshi, Dangi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer,
and Omer Levy. SpanBERT: Improving pre-training by representing and pre-
dicting spans. Transactions of the Association for Computational Linguistics,
8:64-77, 2020.

Hwaran Lee, Jinsik Lee, and Tae-Yoon Kim. Sumbt: Slot-utterance matching
for universal and scalable belief tracking. ArXiv, abs/1907.07421, 2019.

Bing Liu and Tan R. Lane. Attention-based recurrent neural network models
for joint intent detection and slot filling. CoRR, abs/1609.01454, 2016.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett, editors, Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc., 2017.

