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Abstract

Automatic text generation has always fasci-
nated story-writers, and poets, for its abil-
ity to generate text inheriting similar prop-
erties as parent text. This work attempts
to study and analyse one such task- poetry
generation using recent state-of-the-art deep-
learning approaches. We approach our task
in two languages, English and Chinese, us-
ing models trained from scratch, e.g. recur-
rent based models (RNNs), and adopt transfer
learning methods like generative pre-trained
transformer model (GPT) to show how well
poems can be generated by little fine-tuning.
We apply multiple setups and strategies like
varying encoding-decoding schemes, multiple
modeling strategies like gated recurrent unit
(GRU), long short-term memory (LSTM) for
each language to arrive to the best setup that
generates the best quality poems. We ob-
serve that fine-tuning generates meaningful
poems with high coherence and fluency for
English. While, transformer-based encoder-
decoder models produce fine quality Chinese
poems. Apart from this, we also trained a
topic-prediction model to study how well a
machine-generated poem is interpreted by a
system trained on human-written poems.

1 Introduction

Deep neural networks (DNNs) have been the sub-
ject of research since last decade for their ability to
solve complex tasks with ease in computer vision
and pattern recognition. They have been found to
robustly learn underlying patterns in data. But a
question that has always been floating around the re-
search community- how can DNNs be used for cre-
ative purposes like text or image generation? How
can learning be influenced to generate an output
that resembles the input? Writing articles, stories,
poems, etc., have always been done by profession-
als who gracefully express their ideas, emotion,

and cultural heritage in their writing. However,
it’s a challenge when a machine does the same.
Machine-generated texts do not always carry the
richness in the language and meaning. Hence spe-
cial approaches and methods must be used to learn
the hidden structures in text data to generate a rich
quality text. This work studies one such creative
application: poem generation using DNN.

NLG task in general Natural language gener-
ation (NLG) automatically generates intelligible
text using textual representations by leveraging the
state-of-the-art DNN approach. Features underly-
ing the generated text like fluency, grammatical
correctness, syntactical structure etc., highly re-
flects the data on which it is trained. Often the
goal in NLG systems is to robustly capture the
data distribution to generate a meaningfully rich,
coherent and non-repeated text. NLG can be a
text to text generation where the input is linguis-
tic data like human-written poems and stories for
literary text generation, parallel data for machine
translation or it can be a data to text generation
where the input is non-linguistic data like speech
to perform automatic text summarization (Rott and
Červa, 2016). A few applications include text sum-
marization, story and poetic style text generation,
image captioning, building chatbots etc.

Popular DNN approaches to NLG tasks includes
conditional language models (CLMs) and encoder-
decoder based architectures. In CLMs, the out-
put is generated based on a probability distribution
conditioned on an input word or a representation.
The encoder-decoder architectures can perform
sequence prediction given variable-length input-
output prediction wherein encoder encodes a se-
quence of text into vector representations that form
the context vector. The decoder maps the represen-
tation back to a variable-length output sequence.
While these systems need to be trained from scratch



depending on our goals, these methods often need
large data to perform the task robustly. In absence
of large data pre-trained models like BERT (Devlin
et al., 2019a) and GPT-2 (Radford et al., 2019) are
preferred to perform transfer learning. In this work,
we have used these techniques to perform a specific
task in NLG, i.e. poetry generation for Chinese and
English languages.

Poetry generation task Poetry is a fine literary
work consisting of a few lines of text that carry
intense meaning and emotions, often expressed in
a rhythmic style. Often poets use little words to
express an idea or thought, indicating their mastery
of the language. Automatic poetry generation is
thus a challenging task in NLG because it requires
a deeper understanding of language and its form.
It is difficult to capture such fine language struc-
ture within given text data to generate an artificial
poem with a natural touch. This work focuses on
a specific style of poetry- free verse that allows
the number of stanzas and rhyming patterns in a
poem to be flexible. This work analyses several
deep-learning approaches that generate free-verse
style Chinese and English poems conditioned on
mainly two parameters, i.e. topic and keywords.
The goal is to generate a poetry style text based on
a distribution conditioned on given a topic and a set
of keywords. That is to say, the context of the gen-
erated poem should revolve around the given topic,
and it must contain at least one keyword from the
given set.

Overview of our work The current paper fo-
cuses on the poetry generation task in a multilin-
gual setting. Thus, we propose several models for
generating poetry in both English and Chinese. We
approached the task of poetry generation as a con-
trollable NLG. In our models, we controlled for the
content by specifying a topic or keywords.

For the English language, we propose three mod-
els – LSTM Language Model, Encoder-Decoder
and a fine-tuned Conditional GPT-2 model. Chi-
nese poetry is generated using the Encoder-
Decoder model with several model sub-types, in-
cluding Seq2seq-GRU, -LSTM and -Transformer.
We also implement a CNN topic classifier which is
later used to evaluate the results of poetry genera-
tion.

To evaluate generated poems, we use several
metrics – perplexity (PPL), keywords usage (KU)
and topic relevance (TR) for English poems, and

weighted average precision (WAP) and BLEU
score for Chinese poems.

Overview of the following sections Section 2
conducts a detailed survey on recent work on au-
tomatic poetry generation and controllable NLG.
In Section 3 we discuss at length the English
and Chinese datasets that we use in this work.
Further, in Section 4 we elaborate on the differ-
ent models that we use to perform poetry gener-
ation like encoder-decoder models, Long Short
Term Memory (LSTM) and the most recent area
of research- transformer-based models. In Sec-
tion 4.4 we talk about the model used to perform
topic-prediction on generated poems followed by
evaluation metrics in Section 5. In Section 6 we
present our experimental setup. We discuss the
proposed model architecture for both English and
Chinese poetry at length. Moving on, we perform
a detailed comparison of results in Section 7 and
discuss our analysis in Section 8 and end our re-
port with concluding remarks in Section 9. Our
code is open-sourced and can be found on https:

//github.com/palla-lin/SoProPoetry.

2 Related work

2.1 Poetry generation

Poetry generation models receive prompts with dif-
ferent levels of language features from rhythm, lexi-
cal choice to syntax and semantics, and produce cre-
ative texts with aesthetic value. The task gets more
attention until 2000 and the approaches of works
on poetry could be mainly distributed into 3 cate-
gories: rule/template-based methods, probabilistic
methods, and neural network based methods. The
rule/template-based methods heavily rely on pre-
defined steps and explicit linguistic structures like
POS tags (Manurung, 1999; Gervás, 2001; Franky,
2013). Probabilistic language models also have
been used to generate poetic text (Barbieri et al.,
2012). The deep neural networks techniques in ma-
chine translation and summarization tasks also are
transferred to poetry generation. Given a sequence
of words, or with the guiding features of rhyme,
structure and semantics, recurrent neural networks
(RNN) could be used to generate new lines (Zhang
and Lapata, 2014; Ghazvininejad et al., 2016; Yan,
2016). Our work compares mainstream neural
network architectures (GRU, LSTM, and Trans-
former) in recent years and also adopts representa-
tions from the latest pre-trained models like BERT
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series model and GPT-X model.
The common poetic features used to produce

poems usually include form and content features.
Tikhonov and Yamshchikov (2018) extend lan-
guage models with phonetic embedding for poetry
generation and shows that phonetic information is
very important for English and Russian language.
Meter and rhyme are also considered in a few En-
glish poetry generation models (Colton et al., 2012;
Tobing and Manurung, 2015). Some models are
designed to produce specific forms. Ghazvininejad
et al. (2016) deals with the sonnet, a classic form
of poem with 14 lines and each line with 10 sylla-
bles typically. Zhang and Lapata (2014) and Yan
(2016) focus on quartrains, a form of classic Chi-
nese poem, 4 lines of 5 or 7 characters with rigid
rhyme patterns. As for content features, keywords,
lexical-syntactic patterns, or semantic relations are
explored. Keywords could set the semantic domain
and constrain the topics of generation (Wong et al.,
2008; Oliveira, 2012; Zhang and Lapata, 2014; Yan,
2016). Tobing and Manurung (2015) extract depen-
dency relations from input documents to constrain
generated poems. In addition, some works exploit
emotional lexicon to affect or control the senti-
ment of generated poems (Gervás, 2000; Misztal
and Indurkhya, 2014; Oliveira et al., 2017). In our
experiments, we use keywords (and general topic
words) to generate English poems, and exploit for-
mal patterns and keywords to generate classical
Chinese poems.

2.2 Controllable NLG

Applying neural methods to NLG tasks helps with
producing richer and more diverse textual outputs.
However, a downside of these methods is lack of
control over generated output, which is a crucial
property for real-world applications. Given the im-
portance of the previously mentioned property, it
became an active area of research how to control
generation process for factors such as content (Fan
et al., 2018), style (Ficler and Goldberg, 2017),
or politeness (Sennrich et al., 2016a). So far, the
most successful approaches are decoding-based
(See et al., 2019), learning-based (Ficler and Gold-
berg, 2017) and input-based (Gupta et al., 2021),
applied to various NLG tasks like text summariza-
tion (Fan et al., 2018), machine translation (Sen-
nrich et al., 2016a), dialogue response generation
(See et al., 2019). Our focus in this work is on
the poetry generation task where we experimented

with different models to produce content-constraint
output using the input-based approach.

3 Datasets

3.1 English
The dataset used for the English poetry genera-
tion is the Neural Poet dataset (Agarwal and Kann,
2020). The original dataset contains a total of
27131 on 144 topics. The topics include ‘success’,
‘childhood’, ’anger’, ‘animal’, ‘freedom’, etc. The
poems were collected from the web and therefore
differ in genre and style. Most of the poems varied
in length and were limited to 5 lines during data
preparation. Further preprocessing steps included
removing special characters, adding beginning and
end of line symbols, and limiting the number of
tokens. Since several models were proposed for
the task, the input to each model was different and
will be described in more detail in the subsequent
sections.

3.2 Chinese
THU Chinese Classical Poetry Corpus (CCPC) con-
tains classical Chinese poems from Nanbei dynasty
(A.D. 386) to Qing dynasty (B.C. 1912) (Guo et al.,
2019) . The numbers of poems in training, valida-
tion and test dataset are 109727, 7979, 9976. The
genre of poems in this corpus is quatrain, 4 lines
of 5 or 7 characters with specific rhyme patterns.
The type that each line with 5 characters is called
Wuyan(五言), and each line with 7 characters is
called Qiyan(七言). According to the types and
dynasties, a detailed distribution of the dataset is
illustrated in Table 1.

Each poem in this corpus is also annotated with
3 or 4 keywords. To give the training model more
format features, we also add a format template that
differentiate characters and placeholders in each
poem and provide information of segmentation and
length of each line. For example, a poem with
4 lines of 5 characters, like ”清浅白沙滩/ 绿蒲
尚堪把/ 家住水东西/ 浣纱明月下”, has a tem-
plate ”CCCCCPCCCCCPCCCCCPCCCCC”, and
we use different id to annotate them. Therefore, the
input from each poem consists of 3 items: the text,
keywords, and a format template.

4 Models

4.1 LSTM based model
Long short-term memory, or LSTM, was intro-
duced by (Hochreiter and Schmidhuber, 1997) to
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Dynasty Train Valid Test

5-char 7-char 5-char 7-char 5-char 7-char

Nanbei 2 - - - 1 -
Sui 56 3 10 - 9 1
Tang 1863 6872 368 284 435 339
Song 7460 43887 1499 1946 1799 2373
Liao - 4 - - - -
Jin 149 1159 41 52 48 64
Yuan 1260 6688 234 286 344 402
Ming 8968 32152 1828 1430 2340 1821
Qing - 4 1 - - -

Sum 19758 89969 3981 3998 4976 5000

Table 1: Distribution of classical Chinese poems in different dynasties and genre types.

address the problem of vanishing and exploding
gradients and preserving the information for a
longer-term. Since it is designed to capture long-
term dependencies in the sequential data, the net-
work is suitable for many NLP tasks, including
language modeling.

The core idea of the network is that it has a mem-
ory cell and special mechanisms called input gate,
forget gate and output gate to filter the information.
A memory cell, or cell state, is designed to collect
the information about the input and runs along the
entire input sequence. The input gate addresses
what new information will be passed to the mem-
ory cell. The forget gate is used to regulate the
amount of information that will be retained from
the previous memory cell. Lastly, the output gate
is used to output the information from the current
cell.

The input gate (it) , forget gate (ft) and output
gate (ot) are computed with the following equa-
tions:

it = σ(Wixt + Uiht−1 + bi)

ft = σ(Wfxt + Ufht−1 + bf )

ot = σ(Woxt + Uoht−1 + bo)

(1)

For the input sequence x1, x2, ..., xn, at each
time step t, the network computes the hidden state
(at each time step) as an elementwise multiplication
of the output gate and the cell state. ??

ct = ft � ct−1 + it � tanh(Wcxt + Ucht−1 + bc)

ht = ot � ct
(2)

Previous research on poetry generation using
LSTM networks (Agarwal and Kann, 2020; Lau
et al., 2018; Wen et al., 2015) has shown promising
results and thus was the motivation for using it as
one of the models for this project.

4.2 RNN: Encoder-Decoder Architecture

Encoder-decoder is a well-known, general-purpose
architecture used in deep learning. The overall idea
is to first encode an input into a contextualised rep-
resentation which will encapsulate all important in-
formation about the input. Then, the contextualised
representation, possibly with additional input, is
used by a decoder to produce the final output rele-
vant to the task. Both an encoder and a decoder can
be modelled using standard deep learning mecha-
nisms (MLP, CNN, RNN). Furthermore, they can
consist of the same or different mechanisms, and
their parameters can be shared as well.

In the area of natural language processing (NLP),
this architecture is frequently used as a sequence-to-
sequence (Seq2Seq) model (Sutskever et al., 2014)
with the idea to transform a variable-length input
sequence into a variable-length output sequence.
Although seq2seq model was successfully applied
to many NLP tasks, it turned out not to be well-
suited for longer input sequences. Specifically, the
contextualised representation obtained from the en-
coder would prefer later information in an input
sequence while forgetting those from the begin-
ning. The solution for this problem is to use the
attention mechanism, which allows the decoder to
attend all input tokens during each decoding step
instead of a single contextualised representation.
There are various types of this mechanism, but the
overall idea is to calculate input tokens’ attention
scores for each decoding step individually. These
scores, ideally, tell the decoder which information
is relevant for the current step.

Our encoder-decoder model is based on (Bah-
danau et al., 2016), applied for the machine transla-
tion task. The intuition behind using this model is
to consider the poetry generation task as a transla-
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tion (decoding) task - from a set of useful keywords
into an actual poem. Specifically, the steps of the
model are as follow:

• Tokens are embedded using a learnable em-
bedding matrix (shared by encoder and de-
coder).

• Encoder encodes input tokens (keywords) us-
ing bi-directional GRU.

• Attention mechanism is applied over encoded
tokens and previously generated ones to de-
cide which input tokens are relevant for the
current decoding step.

• Calculated attention weights and previously
generated tokens are used by the decoder (uni-
directional GRU) to generate the next token.

• Greedy and top-k approaches are used for the
final decoding.

Keywords used by our model are extracted from
examples (poems) using RAKE algorithm (Rose
et al., 2010). The RAKE algorithm is a popular
tool for feature extraction in the NLP area, e.g. for
relevant keywords extraction (Xu et al., 2020). The
desirable property of this algorithm is that it does
not consider stopwords as possible candidates for
keywords. Also, this algorithm might extract bi-
grams, but after a manual inspection, only the first
word is useful; thus, only the first one would be
kept in such cases.

4.3 Transformers
Transformer models have proved successful in nat-
ural language processing and computer vision tasks
in recent years. The attention mechanism was pro-
posed to improve the representation of dependen-
cies between source and target in machine transla-
tion and later plays a crucial role in Transformer
models. Content-based, addictive, general, and dot-
product attentions are a family of popular attention
mechanisms (Graves et al., 2014; Bahdanau et al.,
2014; Luong et al., 2015). The scaled dot-product
attention, or multi-head attention, is the foundation
of Transformer models (Vaswani et al., 2017).

A basic form of self-attention involves three
steps. First, derive weights of similarity between
the current item and all other items in the sequence.
Second, normalize the weights with the softmax
function. Third, use the weights and correspond-
ing sequence items to compute attention scores.

A scaled dot-product attention introduce three ad-
ditional weight matrices to help optimize models
during training and produce query, key, and value.
The multi-head part allows the model looking all
aspects of the input at all levels.

The original transformer model consists of two
main blocks: an encoder and a decoder. The en-
coder takes the input sequence and encodes con-
textual representations with a multi-head attention
module. The decoder receives the processed in-
put and produces sequences with a masked self-
attention. The encoder and decoder part is inherited
respectively by two landmark transformer-based
pre-trained models, BERT and GPT (Radford et al.,
2018; Devlin et al., 2019b). The success of these
two models largely depends on the integration of
self-supervised learning and Transformer.

4.3.1 BERT and BERT-CCPoem
Bidirectional Encoder Representations from Trans-
former (BERT), is an autoencoding language model
based on the encoder Transformer stack. The pre-
trained language models could provide a better un-
derstanding of target languages and are therefore
applied to a wide range of downstream tasks.

Pre-training The data representation of BERT
involves three embedding layers: token embedding,
segment embedding, and position embedding. The
[CLS] token is added only at the beginning of the
first sentence, and [SEP] token is added at the end
of every sentence. Segment embedding is used to
distinguish the two given sentences. Position em-
bedding provides information on word order since
transformer models process all words in parallel
and do not use any recurrence mechanism. The
BERT model is pre-trained on two tasks: masked
language modeling and next sentence prediction.
In the masked language modeling task, 15% of
the words are masked, and the model is trained to
predict words in both directions. Next sentence
prediction is a binary classification task, and the
model is trained to predict whether sentence B fol-
lows sentence A. During the pre-training, subword
tokenization algorithms like Byte Pair Encoding
(BPE) are adopted to handle OOV words.

BERT-CCPoem The success of pre-trained lan-
guage models inspire variants of BERT recently.
BERT and ELMO are trained on general domain
corpora such as news articles and Wikipedia. To
handle NLP tasks in specific domains like biomedi-
cal or scientific texts, variants of BERT models are
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trained on corresponding specific corpora. Here,
we use BERT-CCPoem, a BERT-based pre-trained
language model especially for classic Chinese po-
etry, developed by Tsinghua University 1. It is
trained on CCPC-Full v1.0, a collection of classic
Chinese poems consisting of 926,024 classical po-
ems. It takes Chinese characters as a basic unit, and
characters with frequency less than 3 are treated as
[UNK]. The pre-training implementation is based
on Hugging Face transformer library. The experi-
ments in Section 6 shows BERT-CCPoem improves
the understanding of classical Chinese poetry.

4.3.2 GPT-2
Generative Pre-trained Transformer or GPT-X
model series, as is popularly known, is an unsu-
pervised pre-trained transformer decoder based lan-
guage model tasked to predict next words given
some text. GPT-1 (Radford et al., 2018) first in-
troduced in 2018 as a semi-supervised approach
for language modeling is trained on a huge Book-
Corpus dataset. It is built upon a stack of 12 trans-
former decoder layers with the self-attention mech-
anism. This helps to learn long-range dependencies
in a text that otherwise is not efficient in RNN based
models. The goal is to perform transfer learning
by learning a universal representation that requires
little fine-tuning or adaptation to different NLP
tasks. It is shown to perform exceptionally well
on tasks like natural language inference, question-
answering, sentence similarity and classification
(Radford et al., 2018).

Let us take a deeper dive into how unsupervised
pre-training works. Given a sequence of unlabeled
tokens U = {u1, u2, · · ·un}which forms a context,
the goal is to predict the next word. This is done
by maximizing the likelihood

L1(U) =
∑
i

logP (ui|ui−k, · · · , ui−1; θ) (3)

where k is the size of context window and θ is some
model parameter. Next, we have the transformer
decoder given as

U = (u−k, · · · , u−1)

h0 = UWe +Wp

hl = transformer block(hl−1), l = 1, · · · , L
P (u) = softmax(hLW T

e )

(4)

1https://github.com/THUNLP-AIPoet/
BERT-CCPoem

Where U is the context vector, We is the token
embedding matrix, Wp is the position embedding
matrix, and L is the number of layers. We use both
token and position embeddings since we process
an entire sentence in one pass. To sum up, the
text and position embeddings are passed through
12 layers of stacked transformer decoder blocks,
and output is mapped to softmax to get prediction
probabilities.

Next, we perform supervised fine-tuning for our
target task using labeled data. Given a labeled
dataset C, input tokens x1, · · · , xm and output la-
bels y, we take the last block of the transformer
decoder and select the last entry of the sequence
hmL . This is further passed through a linear layer to
get probability y given some input tokens:

P (y|x1, · · · , xm) = softmax(hmLWy) (5)

Next, we optimize a loss function corresponding to
the above classification objective by maximizing:

L2(C) =
∑
(x,y)

logP (y|x1, · · · , xm) (6)

Finally, we also optimize the unsupervised loss L1

on the labeled data with some weight λ.

L3(C) = L2(C) + λ× L3(C) (7)

The unsupervised loss helps achieve faster conver-
gence even when we don’t have enough data to
train on. This is what we optimize during fine-
tuning.

In our work, we use GPT-2 (Radford et al., 2019)
which is a successor to GPT-1. It is trained on a
larger dataset, 10X, that was used to train GPT-1
with over 1.5 billion parameters, almost ten times
that of GPT-1. One of the drawbacks of GPT-1
was it’s fine-tuning step in which the model needed
to be adapted to every downstream task. GPT-2
overcomes this issue by eliminating the need to
fine-tune. It differs from GPT-1 in a way the con-
ditioning is done to model the probability of the
next word. GPT-2 models the probability of the
next word based on some context vectors as well
as task information. The basic architecture is still
a transformer-decoder. GPT-2 follows byte-pair
encoding (BPE) (Sennrich et al., 2016b) system,
which uses corpus statistics to decide how to seg-
ment a text into tokens. It has the advantage that
this encoding mechanism requires a vocabulary of
size only 256.
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For our specific task to poetry style text gen-
eration, we needed to fine-tune GPT-2 since it is
pre-trained to perform text generation but not of
poetry style. The generated poems are conditioned
upon a unique topic and a set of keywords. The
keywords used by our model are extracted by ex-
ploiting contextual BERT embeddings of input text.
To begin with, we use TF-IDF vectorizer to list
important words or word phrases that capture the
theme of each poem. This is further pipped through
a spacy model, which only outputs words that are
noun or noun phrases. The next step generates
BERT embeddings of these output words and given
poems and uses cosine similarity to obtain top word
candidates that are most similar to embeddings of
the poem.

4.4 CNN

Convolutional neural networks (CNN) have been
very popular since their first use for computer vi-
sion years ago. Since then it has been very common
among researchers for obvious reasons. Over the
recent years, CNN has been a hot topic among
computational linguists. Apart from being popular
and outperforming other commonly used models
in NLP like Long-Short Term Memory (LSTM)
or Bidirectional Recurrent Neural Networks (Bi-
RNN), CNNs have been shown to achieve greater
accuracy. (Kim, 2014) reported significant im-
provement in results using CNNs compared to then
used traditional methods for sentence classifica-
tion. Since then CNN based models are effective
for most natural language processing tasks like
sentiment analysis, entity recognition, sequence
labeling, etc.

In our topic-prediction system, we make use
of the work proposed by (Kim, 2014) that uses
a single-layered CNN on top of pre-trained word
vectors. It demonstrated a conventional approach
for sentence classification using CNN and reported
that a single layered CNN with pre-trained word
embeddings word2vec (Mikolov et al., 2013) out-
performed traditional models not just in sentence
classification but also sentiment analysis and ques-
tion classification.

The proposed architecture consists of sin-
gle CNN layered model on top of pre-trained
static word embeddings fasttext (Mikolov et al.,
2018).The implementaion follows the steps:

• Tokens are passed through an embedding
layer learned on static word embeddings to

obtain vectored representations.

• Convolution filters are employed for each
ngram representations of a sentence.

• Each of these filters are mapped to non-linear
activations followed by max-pooling to reduce
possible overfitting and computational costs.

• The output to each layer is concatenated to
obtain a flattened out single dimension ten-
sor which are further fed into a full-connected
layer. This gives a learned non-linear repre-
sentation for each. It can be interpreted as
sequence of probabilities for each topic that is
used to perform classification.

5 Evaluation metrics

Evaluating an NLG model might be more challeng-
ing than designing and training it. The main reason
is the nature of the task itself. In most other tasks
there are a finite number of possible output values
and one or more correct (e.g. text classification).
In the NLG task, the output should be fluent, co-
herent, and on the topic natural language sequence,
which leaves room for an infinite number of valid
outputs. To best evaluate mentioned properties of
our models, we selected the following metrics:

• Perplexity (PPL) for fluency. It is a standard
measure for evaluating language models in
NLP, and it tells how perplexed a model is
predicting the next word. Formally, it is calcu-
lated as PPL(W ) = P (w1, w2, ..., wN )−

1
N ,

where N is number of tokens in the sequence
W .

• Keywords usage (KU) for coherence. This
metric evaluates how effective a model is in us-
ing provided keywords in a poem generation.
Furthermore, it is calculated as KU = G/T ,
where G stands for number of generated pro-
vided keywords and T represents the total
number of provided keywords.

• Topic relevance (TR) for on the topic evalu-
ation. This metric aims to evaluate if a model
generated a poem relevant to the provided
topic and/or keywords. For this metric, we
trained a topic prediction which will be ex-
plained in detail in the next section.

• Weighted average precision (WAP) for the
topic prediction model. Average precision
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(AP) lies between 0 and 1 and is computed
from the prediction scores. AP is defined as
AP =

∑
n(Rn −Rn−1)Pn where Pn and Rn

are the precision and recall at the nth thresh-
old. Weighted average computes a weighted
sum of the precision score for each class and
takes average across all classes. A higher
WAP signify a better classifier.

• BLEU for adequacy and fluency. The BLEU
score is a metric widely used in the open eval-
uation of machine translation (Papineni et al.,
2002). It is also used in the previous studies
of poem generation (Zhang and Lapata, 2014;
Wang et al., 2016; Yan, 2016). We follow their
settings and report sentence BLEU scores in a
range from 0 to 1.

6 Experiments

6.1 English poetry
6.1.1 LSTM language model
The model consists of two single-layer uni-
directional LSTM blocks. The first LSTM learns
topic representation of the poem, which is then con-
catenated with the word embedding vector. The
second LSTM block is used as a LM for poem gen-
eration. The LM is conditioned on the topic and is
defined by the following equation:

p(x) =
n∏

i=1

p(xi| {x0, ..., xi−1} , t) (8)

where xi is a poem, and x0, ..., xn is the se-
quence of the words in that poem.

For training, the input to the model consists of
a 4-line poem with a maximum of 50 tokens and a
single word topic of the poem. For shorter poems, a
padding token was used. Each poem also contains
BOP and EOP tokens, indicating the beginning
and the end of the poem. The topic is represented
as a sparse vector padded to the size of the poem.
Word embeddings are used for both topic and poem
vectors. The output of the LSTM layer is passed to
the fully connected linear layer.

During generation, the model gets the topic word
and BOP token as the input, both represented as
single-digit tensors. The data split of 70%, 15%
and 15% was used for training, test and validation
parts, respectively. Total number of 22735 training
examples were used.

A series of experiments were run varying the
embedding size and the size of the hidden layer

for both topic and words, as well as the learning
rate. The initial parameters for the model were 100
hidden units for both topic and word-level LSTM,
and embedding size of 300 and 100 units for topic
and words, respectively. As seen in the Figure 1,
increasing the learning rate had a negative impact
on the training loss. The only significant difference
in the training loss is observed for increased hidden
size of the word-level LSTM.

Figure 1: Training loss per epoch.

The experiments were ran on a minimally pre-
processed dataset. However, due to immense over-
fitting, for the training with final hyperparameters
further preprocessing was done. The final model
setup has a hidden size of 256 units, all other pa-
rameters are the same as in the initial model. The
model is trained during 17 epochs using Adam op-
timizer with the learning rate of 0.001 and a batch
size of 1 on Nvidia K80 GPU, with one training
epoch taking approx. 7 mins to execute.

6.1.2 Encoder-decoder
Initial testing was run with the base model (single
layer bi-directional GRU with dropout 0.2, embed-
ding size 126, hidden size 256, batch size of 32
examples, input size of 5 keywords and maximum
poem length of 100 tokens). For all experiments,
Adam optimizer was used, and experiments were
conducted to establish the best parameters setup
for the final model training. Dramatical overfitting
of the model can be seen in the figure 2 - right
with the minimal (e.g. lowercasing) dataset prepro-
cessing. This suggested a poor mismatch between
training and validation set distributions. After a
detailed manual inspection, it was noticed that the
whole corpus is overwhelmed with non-English
characters (e.g. Chinese letters, special characters
like $, etc.). Therefore, a strict cleaning is per-
formed, leaving only English alphabet characters
and lowercasing the obtained corpus.

Results of experiments on the cleaned corpus can
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Figure 2: Validation losses for encoder-decoder model
experiments.

be seen in figure 2 - left. It can be observed that in-
creasing embeddings size (emb), hidden size (hid)
or number of layers (2l - 2 layers and 3l - 3 layers)
improved performance consistently. On the other
hand, changing Adam optimizer with AdamW led
to overfitting again. More interestingly, apply-
ing pre-trained Glove embeddings (glove) showed
worse performance compared to learning embed-
dings from scratch. Lastly, results of experiments
for establishing the initial learning rate for the opti-
mizer are presented in figure 2 - center.

The final dataset consists of more than 40000
examples. Validation and test sets have 1000 exam-
ples each, uniformly represented among topics (6
or 7 per topic), while the rest of the examples are
used for the training set. Each example has 3, 4 or
5 lines of poem and for each one of the 3, 4 or 5
keywords are extracted.

The final model setup is a 2-layer bi-directional
GRU encoder and uni-directional GRU decoder.
Both, embedding and hidden, have a size of 256.
Adam optimizer is applied with an initial learn-
ing rate 0.001 and linear decreasing after every 2
epochs with no validation loss improvement. Addi-
tionally, teacher forcing is applied during training.
Training is run for 50 epochs with early stopping
after 10 epochs without validation loss improve-
ment. All other parameters are the same as the base
model. A single Nvidia GeForce RTX 2060 GPU
was used for training (average training time per
epoch was 14 minutes).

6.1.3 Conditional GPT-2

As discussed in Section 4.3.2 the model takes in a
sequence consisting of poem-topic, set of keywords
and the poem. This is tokenized using GPT-2’s tok-
enizer with special tokens BOS, EOS, PAD, SEP
and UNK added to get contextual embeddings. The
tokenizer employs BPE encoding scheme to split
words into a sequence of characters rather than
words. We fixed the maximum sequence length to
124 with padding enabled. This parameter is im-

portant as this is the maximum length that GPT-2
can process. The dataset is split into 80-20 train-
validation ratio and is ready to feed the model.

We load the pre-trained GPT-2 model using a
model configuration that has information of all
special tokens added during context encoding and
resize the token embeddings. We use Adam opti-
mized with 10−4 learning rate and perform a grad-
ual decay of learning rate using a scheduler. This
helps optimize the training process and reduce train-
ing time. The fine-tuning procedure is run for 8
epochs that take approx. 22 minutes for each epoch
on a single RTX6000 24 GB GPU card.

We employ top-k sampling and beam search to
generate poems by supplying two conditioning pa-
rameters: (1) topic (2) set of five keywords ex-
tracted from that topic in the training set. Keywords
are extracted using WordWise 2. We compute
PPL, KU and TR scores for each generated poem
and report their mean across all generated poems.

6.1.4 Topic Prediction Model
Sentences were tokenized using NLTK’s word to-
kenizer and pre-trained word embeddings from
(Mikolov et al., 2018) were used to convert word
into vector representations. It consists of 1M
word vectors trained on various Wikipedia arti-
cles, UMBC web base corpus, and stamt.org news
dataset, constituting about 16B tokens. When
defining the model architecture, we load these pre-
trained embeddings of dimension 300 in the Em-
bedding layer. Words in the input absent in the
pre-trained embeddings are initialized randomly
and can be updated accordingly during training
using appropriate arguments.

The based model was trained on all 11467 po-
ems with 144 topics. It used convolution filters of
three sizes 2, 3, 4, and 5 (each mapped to a ReLU
activation) that emulate the bi-gram, tri-gram, four-
gram and five-gram models to obtain multiple fea-
ture representations. All these features are further
passed through the max-pooling layer of stride 3
to reduce the dimension of the input feature rep-
resentation. These are further concatenated, flat-
tened and a dropout probability of 0.15 is applied
to prevent any overfitting. The output features are
passed through a fully connected sigmoid layer to
distribute the output probability over 144 topics.
We used Adam optimizer with a cross-entropy loss
function. This setup performed poorly in capturing

2https://github.com/jaketae/wordwise
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the context of poems and labelling them into appro-
priate topics. Overfitting was observed both on val-
idation and test set where the loss decrease in train
and validation set were inconsistent and became
constant after a few epochs (Figure 3). Similar
behaviour was observed with the F1 score (Figure
4). We believe that samples in NeuralPoet dataset
(each poem mapped to one topic) are not closely
related (e.g. truth and justice, joy and happy), and
the model fails to make a clear distinction. Further,
we also found that the dataset was unclean and full
of illegal non-English characters, which also led
to decreased performance. The training was per-
formed for 50 epochs on a single NVIDIA GeForce
RTX 2060 GPU that took 1.53 mins to execute.

Figure 3: Validation losses for topic-prediction model.
Losses became almost constant after 20 epochs. For
model trained on all 144 topics, losses can be seen to
increase slightly after 8 epochs.

We trained a second model with only seven high-
level topics (love, nature, life, romantic, freedom,
culture, suicide) to inspect model behaviour when
target labels are not closely related. Model param-
eters were kept the same as the base model for
comparison. As evident from Figure 3 validation
loss showed a significant decrease indicating an in-
crease in performance results. F1 score too showed
a drastic improvement (Figure 4).

Figure 4: F1 score on validation set for topic predic-
tion model. Significant improvement can be seen when
model was trained on seven high level topics.

In the final step, we performed topic classifica-
tion on each of the generated poems via encoder-
decoder based model and GPT-2 transformer based
model. Since the generated poems were collec-
tively based on all 144 topics, we use the base
model for topic prediction to study its performance
on machine-generated poems. To no surprise, the
prediction accuracy was worse than the test data.
We analyse possible reasons in Section 8.

6.2 Chinese poetry

6.2.1 Experimental Design
In the experiments of Chinese poetry generation,
we control three factors (language representations,
types of neural networks, and decoding strategies)
and answer the following questions:

• How language representations affect the per-
formance of neural network models in gener-
ating poems? What is the difference between
word embeddings learned through the embed-
ding layer and loading pre-trained contextual
representations from BERT models?

• Given the general sequence to sequence ar-
chitecture, which type of neural network per-
forms better? GRU, LSTM or vanilla Trans-
former?

• Among greedy, top-k, and beam search decod-
ing strategies, which one provides more fluent
and elegant poems?

Language representations have two levels:
word2vec and BERT. Types of neural networks
have three levels: GRU, LSTM and vanilla Trans-
former. Decoding strategies have three levels:
greedy, top-k, and beam search. Therefore, we
get an experiment of 2× 3× 3 = 18 conditions.

6.2.2 Experimental Settings
We adopt a general encoder-decoder architecture
and three types of neural network models, so we
have three sub-types: Seq2seq-GRU, Seq2seq-
LSTM, Seq2seq-Transformer.

For all models, we use the Adam optimizer with
β1 = 0.9, β2 = 0.98 and ε = 10−9. The learning
rate is 0.0001. We also take dropout as a regular-
ization technique to each layer of encoder and de-
coder. The dropout rate is 0.1. Early stop strategy
is applied to all models after observing 5 worse val-
idation scores. The embedding size of word2vec
is 768. The word2vec embedding initializes the
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Model PPL KU TR
LSTM LM 4805.970 - ?
Enc-Dec 131.543 0.24 0.09
Cond. GPT-2 15.672 0.20 0.21

Table 2: Overall comparison of LSTM, encoder-
decoder architecture and conditional GPT-2 models for
English poetry generation. As a general rule PPL
scores can be considered when deciding over quality of
generated poem. To our observation, GPT-2 generated
high quality poems.

weight matrix from normal distribution N(0, 1).
BERT-CCPoem v1.0 is a pre-trained model with 8
layers, 512 hidden size, and 8 heads. We train these
models on a server with 4 GeForce GTX TITAN X
GPUs.

In the decoding phase, we set k = 32 in top-k
sampling and beam = 5 in beam search.

Seq2seq-GRU, Seq2seq-LSTM Both encoder
and decoder parts have one bidirectional layer. The
hidden size in feed-forward layers is 1024. The
GRU models with word2vec embedding and the
BERT embedding took 9 epochs (about 90 mins)
and 10 epochs (about 90 mins), respectively to fin-
ish training. The LSTM models with word2vec
embedding and BERT embedding spent 9 epochs
(about 105 mins) and 9 epochs (about 90 mins)
respectively in training.

Seq2seq-Transformer Both encoder and de-
coder parts have 6 layers. And feed-forward lay-
ers have a hidden size of 2048. The models with
word2vec embedding stopped training after 17
epochs (about 57 mins). And the models with
BERT embedding took 16 epochs (about 51 mins)
to finish training.

7 Results

We present final results in Table 2 that shows a
birds-eye view of important results obtained for
this project at a glance.

English poetry We also PPL, KU and TR scores
on poems generated using conditional GPT-2
model in Figure 3. We use two decoding strategies-
top-k sampling and beam search and report the
results on only seven high-level topics.

To understand the intricacies of the topic-
prediction system discussed in Section 6.1.4 we
train the model following two strategies: (1) first
we train the model on all 144 topics (2) then we

Top-K sampling Beam search

Topics PPL KU TR PPL KU TR

love 8.758 0.22 0.2 11.423 0.12 0.2
nature 17.621 0.30 0.2 9.672 0.20 0.2
life 10.937 0.22 0.2 21.419 0.14 0.3
romantic 9.054 0.20 0.3 27.268 0.28 0.5
freedom 7.814 0.24 0.3 10.322 0.18 1.0
culture 10.545 0.14 0.1 11.838 0.16 0.5
suicide 31.53 0.12 0.1 12.469 0.14 0.2

Table 3: PPL, KU and TR scores on poem generated
using fine-tuned GPT-2 based on top-k sampling and
beam search. The results are reported for only seven
high level topics. Poem generated using top-k sampling
generates better quality poems than beam-search.

train the model on only seven high-level topics (we
call it HLT) and report the weighted average preci-
sion score (WPA) and accuracy as observed on test
set. The results reported can be found in Table 7

Chinese poetry We present BLEU-1, BLEU-2
and KU scores for Chinese poetry generation in
table 4, table 5,and table 6. 5-Char and 7-Char in-
dicate Chinese poems with 5 characters per line
and 7 characters per line, respectively. GRU,
LSTM, Transformer represent the model with GRU
, LSTM and vanilla Transformer as backbone, re-
spectively. Base and BERT denote the embedding
initialized from N(0, 1) and pre-trained BERT, re-
spectively. And greedy, top-k, and beam indicate
three types of decoding strategies of greedy decod-
ing, top-k decoding with k=32 and Beam search.
In all 18 conditions, Transformer+base+beam and
Transformer+bert+greedy both achieve the best
BLEU-1 score (0.364), Transformer+base+beam
achieve the best BLEU-2 (0.246), and Trans-
former+bert+beam achieves the best KU score
(0.960), for all Chinese poems.

8 Discussion

LSTM Language Model (English) The results
suggest that a proposed model architecture is in-
sufficient for the task in question. First of all, the
model failed to produce good quality results. Over-
fitting was observed even after more detailed pre-
processing of the dataset was done. Increasing vali-
dation loss indicates the model does not generalize
well to unseen data. Second of all, conditioning on
the topic does not lead to the intended result – this
could be either be due to the model architecture in
general, or due to the choice of topic vector rep-
resentation. Finally, the topic alone is not enough
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Model
5-Char 7-Char All

BLEU-1 BLEU-2 KU BLEU-1 BLEU-2 KU BLEU-1 BLEU-2 KU

GRU+base 0.328 0.219 0.691 0.291 0.182 0.735 0.310 0.200 0.713
GRU+bert 0.368 0.241 0.792 0.322 0.207 0.861 0.345 0.224 0.826

LSTM+base 0.325 0.217 0.683 0.279 0.177 0.710 0.302 0.197 0.697
LSTM+bert 0.362 0.242 0.784 0.318 0.204 0.841 0.340 0.223 0.813

Transformer+base 0.390 0.256 0.895 0.333 0.218 0.958 0.361 0.237 0.927
Transformer+bert 0.390 0.260 0.917 0.337 0.219 0.971 0.364 0.240 0.944

Table 4: Comparison on the impact of different embedding initialization on Chinese poetry generation. BLEU and
KU scores of Chinese poems generated by greedy decoding strategy are reported here.

Model
5-Char 7-Char All

BLEU-1 BLEU-2 KU BLEU-1 BLEU-2 KU BLEU-1 BLEU-2 KU

base+greedy

GRU 0.328 0.219 0.691 0.291 0.182 0.735 0.310 0.200 0.713
LSTM 0.325 0.217 0.683 0.279 0.177 0.710 0.302 0.197 0.697
Transformer 0.390 0.256 0.895 0.333 0.218 0.958 0.361 0.237 0.927

base+top-k

GRU 0.265 0.193 0.518 0.236 0.152 0.535 0.250 0.172 0.526
LSTM 0.257 0.199 0.488 0.226 0.148 0.520 0.241 0.173 0.504
Transformer 0.371 0.248 0.854 0.312 0.205 0.919 0.342 0.227 0.886

base+beam

GRU 0.363 0.253 0.878 0.314 0.213 0.934 0.338 0.233 0.906
LSTM 0.359 0.250 0.846 0.309 0.206 0.900 0.334 0.228 0.873
Transformer 0.394 0.268 0.934 0.335 0.224 0.972 0.364 0.246 0.953

Table 5: Comparison on the impact of GRU, LSTM and Transformer. BLEU and KU scores of different networks
with the same decoding and embedding are reported here.

Model
5-Char 7-Char All

BLEU-1 BLEU-2 KU BLEU-1 BLEU-2 KU BLEU-1 BLEU-2 KU

GRU greedy 0.368 0.241 0.792 0.322 0.207 0.861 0.345 0.224 0.826
GRU top-k 0.308 0.213 0.639 0.266 0.164 0.670 0.287 0.188 0.654
GRU beam 0.349 0.249 0.863 0.300 0.207 0.915 0.325 0.228 0.889

LSTM greedy 0.362 0.242 0.784 0.318 0.204 0.841 0.340 0.223 0.813
LSTM top-k 0.301 0.212 0.622 0.263 0.170 0.649 0.282 0.191 0.635
LSTM beam 0.356 0.253 0.884 0.299 0.208 0.926 0.328 0.231 0.905

Transformer greedy 0.390 0.260 0.917 0.337 0.219 0.971 0.364 0.240 0.944
Transformer top-k 0.372 0.252 0.872 0.318 0.211 0.937 0.345 0.231 0.904
Transformer beam 0.391 0.266 0.946 0.334 0.221 0.974 0.362 0.244 0.960

Table 6: Comparison on the impact of different decoding strategies. BLEU and KU scores of Chinese poems
generated by models with Bert embedding are reported here.
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for the model to generate topic-relevant output. In
the best case scenario, the output contains the topic
word itself, while the rest of the words are not
closely related to it. Overall, the model is able to
learn to generate poems, however their quality is
poor. Produced output resembles poetry, although
it is mostly due to the vocabulary range. Generated
poems lack coherence and grammaticality, which is
an expected outcome according to high perplexity.

Encoder-Decoder (English) Results obtained
for Encoder-Decoder model on English corpus sug-
gest following: (i) Better corpus is needed in or-
der to properly train a model from scratch. Even
after additional cleaning and preprocessing, the dif-
ference between validation and train losses was
significant (approx. 3.0). This might be due to con-
siderable differences between data distributions in
two sets. (ii) Modeling poetry generation as a trans-
lation task might not be the best option. First of all,
the encoder part could not represent keywords in a
meaningful way for a decoder to learn to use them
properly. A potential solution might be to use a
non-sequential type of encoder (e.g. transformers).
Next, the model struggled to be fluent. Since this is
not a task-specific problem, it might be solved us-
ing a large pre-trained language model (our results
with conditional GPT-2 are promising). Lastly, us-
ing only topic-related keywords is not enough for a
model to generate poems on that topic. Additional
control factors for a topic might help, but since the
model is trained from scratch, it probably would
not be sufficient. Therefore, a more sophisticated
decoder component with a lot more data could be
a solution.

Conditional GPT-2 (English) Results reported
for fine-tuned GPT-2 model in Table 2 suggests
that transfer learning generates the best quality
poems. We conclude this by analyzing the PPL
scores, where a lower score indicates more fluent
and meaningful poems. Further investigation is
done in Table 3 where we observe that the top-k
sampling decoding scheme performed better than
beam search. We also observed more word repe-
titions in poems decoded using beam search. We
also find that top-k sampling better retains key-
words in its poems by comparing the KU scores
for both decoding strategies. Lastly, we computed
TR scores that showed that the topic-prediction
model could not predict correct topics to generate
poems. We believe that although GPT-2 gener-

WAP Accuracy (%)

All topics 0.3993 28.81
HL topics 0.6063 58.77

Table 7: Weighted average precision (WAP) scores and
accuracy on test set for topic-prediction model. We fol-
lowed two strategies (1) train the model on all topics
(2) train the model only seven high level (HL) topics

ated poems captured some intricacies of a mastered
poet, the topic-prediction model was trained from
scratch on poems from amateur poets, resulting in
a low-performing classifier. Examples of generated
poems can be found in the Appendix.

Topic prediction Model To study the perfor-
mance of the topic-prediction model, we compute
WAP and accuracy scores and report in Table 7. We
first train the model on 144 topics and observe on
test set that 28% of topics are classified correctly
while the accuracy increases to 58% when trained
on high-level topics. Higher WAP on HL topics
indicates that the model makes more relevant pre-
dictions, i.e., we achieve around 51% improvement
over WAP by eliminating closely related topics.
We believe that these high-level topics are distinct
from each other, and hence the model finds it easier
to make predictions. Moreover, upon inspection,
we conclude that these poems are not well-curated,
poorly written and do not very well align with their
topic. It was also unclean and overwhelmed with
illegal characters that brought some noise in its
model distribution. We believe that poems written
by a mastered and experienced poet are suitable for
performing such topic-classification tasks.

Encoder-Decoder (Chinese) In Table 4, we
compare the effects of word embedding learned
in the embedding layer and contextual representa-
tions from the pretrained BERT-CCPoem model on
the performance of poetry generation tasks. The
result shows all models with BERT-CCPoem rep-
resentations shows a better performance in both
5-char and 7-char poem generation. It implies that
contextual representations encode useful knowl-
edge to generate poems in the downstream task
since BERT-CCPoem was pretrained on a relevant
domain-specific corpora.

In Table 5, we compare the performance of dif-
ferent neural network models in generating poems,
and the result shows the transformer models de-
liver the best performance. Even the length of
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Chinese poems is no longer than 28 characters, the
transformer model still shows it performs better in
capturing long-range contextual dependencies than
RNNs.

In Table 6, we compare the impact of different
decoding strategies. The greedy and beam search
algorithms could deliver higher scores in some spe-
cific cases, respectively. It implies that there is
no silver bullet for all models to generate fluent
and elegant poems. In addition, we also notice
that some keywords receive excessive ’attention’
from models during training; therefore, models pro-
duce repeated keywords in a single line during the
decoding phase. Therefore, how to add proper pa-
rameters of penalty automatically in decoding is a
key question to explore in the future.

9 Conclusion and Future work

Based on all experiments that we conducted, we
came up with the following future work sugges-
tions:

• Corpus-wise. In case of English corpus, rig-
orous data collection and processing should
be performed. There are a lot of non-English
characters, and poems should be stored in a
more structured way (e.g. clear distinction be-
tween an actual poem and additional informa-
tion). Furthermore, keywords (and other fac-
tors) labelling would be nice to have. This is
especially important for models trained from
scratch, which also requires a larger corpus.
For Chinese corpus, we do not have sufficient
resources to train a word tokenizer for classi-
cal Chinese in the preprocessing, so we adopt
a character-based representation. We believe
an efficient word tokenizer would enrich more
linguistic information for models in the future.

• Model-wise. According to our results, using
large pre-trained yields the best results. There-
fore, we think that transfer learning approach
might be an interesting next step to try. This
strategy achieves good performance on other
tasks. Thus, designing a task-specific step is a
reasonable way to go. This way, the problem
with fluency should be overcome, while task-
specific steps would guide a model to learn
how to perform the task-specific operations
(e.g. select useful keywords).

• Decoding-wise. In the English task, top-k
shows better performance over greedy decod-

ing, so it might be reasonable to try similar
strategies. Top-k decoding introduces better
diversity and less repetition during the genera-
tion process. In Chinese tasks, there is not one
decoding strategy that could always achieve
better performance. Penalty parameters are
crucial for beam search decoding to eliminate
repeated keywords, which is a question to ex-
plore further.
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A Appendix

A.1 Generated examples
LSTM LM: Top-K decoding (English)

1. Topic: love
i’d force love more freezing
a river once upon my
in blest bearing pauses passion for another

2. Topic: anger
searing spark up fast asleep
with hopes lamp angered keep
by thy numbers can fly these years
will not turn loss

3. Topic: trust
strength entering envelopes fill beneath
christian kids beloved lips breathing
water with mine making hand
pride but not any human kind

Encoder-Decoder: Top-K decoding (English)

• Keywords: friend, feel, cheer, sister
sister are my sister
you are my sister
you are me
you feel you

Encoder-Decoder: Greedy decoding (English)

• Keywords: dare, love, compare, copper, soft
when you have to see the heart
i you taste lips
on
cheek
i a was in its of love me

Conditional GPT-2: Top-K decoding (English)

1. Topic: love
Keywords: roses, water, peacock, strands,
puppy love

You are beautiful
and there is nothing wrong with you
You are free
and so are the puppy loves
they don’t want you
Because you have nowhere else to go
You may have a lot of money
and you will have lots of shoes to put on
But your so very own and so very happy
Because you have seen the other side of
things
and the little puppy loves got away with it
Because you have no other choice
But you will stay and watch
till the water comes!

2. Topic: culture
Keywords: indian culture, monasteries, jester,
meditation, distasteful gestures

This is life as we know it -
The first year was “Called “Ammurition”

Then the land was mapped with
wonders
Of Indus and Sphinxes
The Jura stone and the marble
Made of silver, “All” seemed like gold
To the people of this land;
But what they didn’t know was “India”;
How many things it made
Even today?
No one knows, but what we know
As far back as the late eighteenth century
As people in Hanukkah had built temples
They knew the wonders untold
But they didn’t know at all what they’d
come up with
As a result,
Of what they had created in our
Indias and Sphinxes
And of all our modern misadventures
This is life as we know it.

Conditional GPT-2: Beam search (English)

1. Topic: love
Keywords: key, pure bliss, pain, flame, pea-
cock

Love is pure bliss.
It doesn’t require a lot of work,
just a little bit of love and it will go a long,
long way!

Love can be as simple as a key
or as sweet as the heat of a candle
and it can last for hours and hours
until the end of the world.

2. Topic: culture
Keywords: mysticism, prayers, sages, future
fuse, ruin

The Future fuse

The mysticism of the future
Will fuse with the sage tradition
Of the past and the present
And bring together
An amalgation of mysticisms
That will combine
With modern conveniences
To bring order to the world.

Seq2seq-GRU (Chinese)

• Embedding type:Bert embedding
Decoding: greedy decoding
keywords: 绿水，青山，醉眼，离愁
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绿水青山绕郭城
离愁无处不相思
只今醉眼无人到
一夜风前一两声

• Embedding type:Bert embedding
Decoding: top-k decoding
keywords: 暮云,春雨,行人,缥缈

浮生缥缈暮云中
一树黄花独倚丛
数尽行人归未得
几回春雨过溪风

• Embedding type: No pretrained embedding
Decoding: greedy decoding
keywords: 琉璃,明河,东去,星

东去明河水上天
琉璃一片落星光
不知何处人间世
只有当年一寸无

• Embedding type: No pretrained embedding
Decoding: top-k decoding
keywords: 明月,清光,徘徊,终夜

不识清光有
徘徊终夜流
独坐无语想
犹自怯寒身

Seq2seq-Transformer (Chinese)

• Embedding type:Bert embedding
Decoding: greedy decoding
keywords: 江水,浮云,秋色,美人

江水浮云秋色多
美人何处不相过
一声一笛惊相逐
不似当年梦里过

• Embedding type:Bert embedding
Decoding: top-k decoding
keywords: 茅檐,长条,高楼,寒鸦

茅檐翠雨度寒鸦
一枕高楼醉似霞
今日长条谁是伴
半江晴色散梅花

• Embedding type: No pretrained embedding
Decoding: greedy decoding
keywords: 寒潭,兰桡,月出,携酒

月出寒潭水
兰桡泛钓船
携酒看不足
随意到江边

• Embedding type: No pretrained embedding
Decoding: top-k decoding
keywords: 孤舟,蓑笠,寒江,鸟

云外寒江水
沙平鸟飞还
蓑笠孤舟外
孤舟载月间

A.2 Word cloud of keywords

Figure 5: World cloud of topic- sleep poems. The key-
words were extracted using scheme discussed in Sec-
tion 4.3.2
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