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Introduction

ASR crucial in search and rescue missions: vital for quick, accurate

decision-making in hostile conditions.

Challenges for ASR in SAR: fast, emotional, and stressful speech,

extreme noise, unpredictable disturbances.

Limited data availability: privacy restrictions, difficulty in collecting

SAR-specific speech data.

Our contribution: released RescueSpeech, a 2-hour annotated

speech dataset from the German SAR domain, marking the first

public release in this domain.

Experimental focus: noise-robust German speech recognition,

combining speech enhancement methods.

The RescueSpeech Dataset

Consists of mixture of microphone and radio-recorded speech from

simulated SAR exercises involving robot-assisted emergency

response teams.

Recorded by native German speakers in radio-style dialogues

among team members, radio operators, and team leaders.

Applications extend beyond robot control such as using speech

recognition to support decision-makers and process monitors in

disaster situations.

RescueSpeech clean set

The recordings, initially captured at a 44.1 kHz sampling rate, underwent

down-sampling to 16 kHz. Following this, segmentation is performed to

extract mono-speaker single-channel audio recordings, all of which are

manually transcribed.

RescueSpeech noisy set

Noises are injected into clean utterances to address low-noise

profile of clean RescueSpeech. This helps mimic SAR condition.

Noise types– emergency vehicle siren, breathing, engine, chopper,

static radio noise.

Limitation: Real-world noisy data often involves complex non-linear

relationships between noise and speech, not easily replicated by

artificially adding noise to clean speech.

Table 1. Distribution of utterances and hours in the RescueSpeech clean and noisy

dataset.

Clean Noisy

Mins #Utts. HRS #Utts.

Train 61.86 1591 7.20 4500

Valid 9.61 245 2.16 1350

Test 24.68 576 2.16 1350
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Figure 1. SepFormer block diagram that combines IntraTransformer and

InterTransformer to model short-term and long-term dependencies.

Fine-tuning strategies

1. Clean training

Pretrain ASR and language models, then fine-tune on RescueSpeech

clean dataset for domain adaptation.

2. Multi-condition training

Use pretrainedmodel for training on an equal mix of clean and noisy audio

from RescueSpeech dataset.

3. Model-combination I: Independent training
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Figure 2. Training schema for independent model training strategy.

4. Model-combination II: Joint training
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Figure 3. Training schema for independent model training strategy.

Results

ASR Performance

Table 2. Comparison of test WERs using different training strategies on clean and

noisy speech inputs from the RescueSpeech dataset.

ASR Model clean noisy

Pre-training
CRDNN 52.03 81.14

Wav2vec2 47.92 76.98

WavLM 46.28 73.84

Whisper 27.01 50.85

Clean training

CRDNN 31.18 60.10

Wav2vec2 27.69 62.60

WavLM 23.93 58.28

Whisper 23.14 46.70

Multi-cond. training

CRDNN 33.22 58.95

Wav2vec2 29.89 57.98

WavLM 25.22 52.75

Whisper 24.11 45.84
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Figure 4. Log-power spectrogram of clean, noisy, and SepFormer-enhanced utterances

for emergency vehicle siren noise type at -5 dB SNR.

Results

Combining ASR and Speech Enhancement

Table 3. Speech enhancement performance on the RescueSpeech noisy test inputs.

Metric Model

Comb. I

Model Comb. II

CRDNN wav2vec2 WavLM Whisper

SI-SNRi 6.516 6.618 7.205 7.140 7.482

SDRi 7.439 7.490 7.765 7.694 8.011

PESQ 2.008 2.010 2.060 2.064 2.083

STOI 0.842 0.844 0.854 0.854 0.859

Table 4. Word-Error-Rate (WER%) achieved with independent training (Model

Comb. I ) and joint training (Model Comb. II).

ASR Model Model Comb. I Model Comb. II

CRDNN 54.98 54.55

Wav2vec2 50.68 49.24

WavLM 48.24 46.04

Whisper 48.04 45.29

Conclusion

Addressing challenges in SAR domain: limited speech data, SAR

noise robustness, and conversational speech.

Introduced RescueSpeech– search and rescue domain audio

dataset.

Despite leveraging advanced models, the best performance

achieved WER of only 45.29%.

(a) Dataset (b) Source code
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