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April 18, 2023

https://www.uni-saarland.de/en/fakultaet/p.html
https://www.uni-saarland.de/en/department/lst.html
http://www.uni-saarland.de/
https://www.dfki.de/en/web/research/research-departments/multilinguality-and-language-technology


Declaration of Authorship
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Abstract

Noise Robust Speech Recognition for Search and Rescue Domain

by Sangeet Sagar

Despite recent advancements in speech recognition, there are still difficulties in accurately tran-

scribing conversational and emotional speech in noisy and reverberant acoustic environments.

This poses a particular challenge in the Search And Rescue domain, where transcribing con-

versations among rescue team members is crucial to support real-time decision-making. The

scarcity of speech data and associated background noise in SAR scenarios make it difficult to

deploy robust speech recognition systems.

This work extends the task of noise robustness in speech recognition to SAR missions. To

address this issue, we have created and made publicly available a German speech dataset called

RescueSpeech. This dataset includes real speech recordings from simulated rescue exercises.

Additionally, we have released competitive training recipes and pre-trained models. Our study

indicates that the current level of performance achieved by state-of-the-art methods is still far

from being acceptable. We hope that the release of RescueSpeech will bring attention to the

challenges of speech recognition in SAR scenarios and encourage further research in this field.
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Chapter 1

Introduction

From keys to touch and touch to voice, technology has grown to make computing more seamless,

natural, and simple. Voice assistants, the latest in the technology to hit the consumer market,

have taken the interface out of communicating with a machine. Automatic speech recogni-

tion (ASR) enables these devices to accurately translate spoken utterances into text. ASR has

made communication amongst the diverse population effortless, lucid and today, it has found

a wide range of applications in the scientific domain (e.g. voice-based translation software),

the commercial world (e.g. live subtitling of conferences), and healthcare (e.g. efficient and

expedited diagnosis, voice-assisted appointment booking). It should not come as a surprise that

for such systems to reach a human-level accuracy, the amount of speech data needed is signif-

icantly large which involves a labour-intensive process of data collection and further manually

transcribing them with the help of language experts. Predominant languages like English, Ger-

man, Spanish, Chinese, etc, have several publicly available speech datasets like CommonVoice

[1], LibriSpeech [2], VoxCeleb [3] etc, but for low-resource languages like Kinyarwanda, Zulu,

Swahili the available dataset for research is pretty scarce. This poses a problem in training

speech recognizers dedicated to such languages. Transcribing speech is challenging when there

is a domain mismatch i.e. a model trained on audio collected from public speeches is used to

transcribe university mathematics lectures. Such a system is likely to underperform compared

to a model trained directly on classroom lectures. A few other obstacles include differences

in dialect and accent among speakers. The resulting performance of the ASR model trained

on dialogues of native speakers can substantially deteriorate when tested against non-native

speakers [4].

Among these challenges, ASR is also known to perform poorly in noisy surroundings since the

audio quality is low and is corrupted with unwanted noises like street noise, keyboard noise,

crowd noise, babble noise, vehicle noise, etc. This is bound to happen because the training set

generally does not constitute any noisy speech data and the model fails to generalize over noisy

speech. Type and level of noise are the two main factors that affect ASR performance in noisy

conditions. For E.g. transcription of audio recorded in a lunch cafeteria is likely to perform

1



Chapter 1. Introduction 2

better than audio recorded in presence of engine noise and emergency vehicle siren. Therefore,

a system that is robust to adapt to different noisy conditions as well as clean environments– a

noise-robust ASR can be trained to withstand such noisy scenarios. A system may be made to

learn to adapt to noises or use a noise-eliminating component to get rid of the noise before the

speech recognizer acts on it.

In this work, we focus on speech recognition for the German language that is robust to noises

with a special focus on the search and rescue (SAR) domain. Noise in the SAR domain encom-

passes fire engine noise, vehicle sirens, static radio noise, chopper noise, and heavy breathing

during speech. These scenarios often involve making critical decisions in extremely hostile con-

ditions, such as underground rescue operations, nuclear accidents, fire evacuation or collapsed

buildings after an earthquake. In such cases, rescue workers must act quickly and accurately

to prevent the loss of lives and damage. Transcribing and automatically analyzing the con-

versations within the rescue team can provide useful support to help the team make the right

decisions in a limited amount of time.

1.1 Motivation

This research work is dedicated to the “A-DRZ: Setting up the German Rescue Robotics Center”

project. This mega-project aims to provide an efficient response and swift communication in a

real disaster scenario by deploying robots enabled with situational understanding.

Rescue response to an emergency involving high-risk scenarios like widespread fire, terrorist

bombings, regime change, earthquake, nuclear accidents, etc, often exceeds human capacity to

mitigate the damage. It involves making critical decisions in extremely hostile conditions and

executing actions with limited resources. Mobile robots and drones are frequently used to assess

the accident site and get access to isolated or cut-off locations of the site. This can help with

significant damage control and get the rescue team into providing a quicker and better-planned

response. It is necessary that the robotic system is aware of the goal of the rescue mission and

well adapted to a disaster scenario. So to keep it simple, the idea is to power these robots with

spoken language understanding (SLU), allowing them to acquire situational knowledge using

the verbal communication carried out among the rescue team.

The current system has been illustrated in Fig: 1.1, but we shall focus primarily on the speech

processing component as shown in Figure 1.2. All communications among the first-responder

team members are captured and transmitted to the speech-processing component. It has three

modules– ASR, natural language understanding (NLU), and a post-processing module. Input

audio is transcribed using the ASR system, and the text transcriptions are further semantically

interpreted using the NLU. It extracts meaning from the text and maintains state of the dialogue.



Chapter 1. Introduction 3

The post-processing module takes in the NLU hypothesis and some meta-data (like speaker and

addressee information), re-evaluates each hypothesis and reranks them.

Figure 1.1: A-DRZ complete system architecture [5]

Figure 1.2: A-DRZ: speech processing component [6]

ASR in the speech processing component currently relies on a cloud-based commercial service–

Cerence Mix ASR, and a locally running ASR– Mozilla Deepspeech [7]. Although commercial

ASR services are better in terms of performance, it is not a reliable resort as it needs an internet

connection to run its services. Such an internet connection is often absent in an emergency. Also,

these commercial or locally installed ASR systems perform poorly with corrupted speech signals

or in noise-filled surroundings. This work aims to fill up this void for an noise-robust ASR,

specially curated for hostile conditions like the SAR domain, and comparable in performance

with commercially available online services.
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1.2 Contribution

In this work, we propose the task of noise-robust German speech recognition for SAR domain.

It involves developing and training systems capable of performing efficiently during rescue op-

erations in SAR noise-contaminated surroundings. The goal is to enhance communication per-

formance between rescuers with voice-enabled rescue robots. The challenges we address are–

• Lack of speech data in SAR domain: Speech data pertaining specifically to the SAR

domain is hard to collect and is often barricaded with privacy restrictions, thus limiting

their availability to the scientific community. This leaves us with a scarce amount of data,

but to train a speech recognizer for SAR application would inarguably require a plethora

of such data to reach human-level accuracy. Our work overcomes this challenge by training

a speech recognizer on a large amount of openly-available clean speech data (see Section:

4.2), and further fine-tuning on a little in-domain data.

• Robustness to SAR noises: To create a speech recognizer that is robust to noise specifically

the ones common in the SAR domain like engine noise, vehicle sirens, radio noise, etc

would need an ASR adapt to these noises and perform transcription. However, this poses

a challenge to the existing ASR frameworks as they are not suited to work in such extreme

conditions. We propose multiple approaches to solve this obstacle– (i) perform a multi-

condition training (where a system is trained on a uniform mixture of clean and noisy

speech signals) (ii) integrate a speech enhancement module (to eliminate the noises of the

speech signals before feeding to ASR) with the ASR module (see detailed explanation in

Section: 5.3).

To encourage research and development in this field, we have released RescueSpeech, a German

dataset for the Search and Rescue Domain Speech. This dataset contains authentic speech

recordings between members of a rescue team during several rescue exercises. To the best

of our knowledge, we are the first to publicly release an audio dataset in the SAR domain.

RescueSpeech contains approximately 2 hours of annotated speech material. Although this

amount may seem limited, it is actually quite valuable and can be effectively used to fine-tune

large pre-trained models such as wav2vec2.0 [8], WavLM [9], and Whisper [10]. In fact, we

demonstrate that this material is also suitable for training models from scratch when combined

with proper data augmentation techniques and multi-condition training.

This paper presents a comprehensive collection of experimental evidence for the task at hand–

noise-robust German speech recognition. It employs state-of-the-art methods for both speech

recognition and speech enhancement, as well as a combination of the two. Despite excelling in

simpler scenarios, our results show that even modern ASR systems like Whisper [10], struggle to

perform well in the demanding rescue and search domain. We have made our dataset, training
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recipes, pre-trained models and training logs available to the community 1. Additionally, a

demo of this work can be found online2. With the release of the RescueSpeech dataset, we hope

to foster research in this field and establish a common benchmark. We believe that our effort

can help raise awareness about the importance of the use of speech technology in SAR missions,

and the need for continued research in this domain.

For the desired task the ASR module needs to be online i.e. speech recognizer running locally

and transcribing audio in real-time, but for simplicity, we shall focus on building an offline-ASR

system.

Thesis structure This thesis is distributed as follows: we perform a detailed literature survey

in Chapter 2 where we present how speech recognition and enhancement evolved over the last

20 years as well as an overview of the SpeechBrain toolkit. This is followed by an in-depth

discussion on technical background in Chapter 3. Here we dive deep into the concepts driving

this thesis. In Chapter 4 we discuss related corpora in this field and training data used to perform

experiments. We also describe details on the RescueSpeech dataset. Further, in Chapter 5 we

present our complete experiment protocol and training strategies. Next, we present our results

and back them with proper analysis and reasoning in Chapter 6. Finally, we conclude our thesis

work with closing remarks and suggestions for future work in Chapter 7.

1GitHub repository: https://github.com/sangeet2020/speechbrain/tree/develop/recipes/RescueSpeech
2Project demo: https://sangeet2020.github.io/



Chapter 2

Literature Survey

In this chapter, we perform a systematic literature review on speech recognition and speech

enhancement that will be referenced throughout this thesis. We study classical as well as

modern approaches to understand how these technologies have evolved in the past two decades.

Based on the title- Noise Robust Speech Recognition for Search and Rescue Domain,

we break down our survey into two parts- automatic speech recognition and speech enhancement

and further explore how their combination has contributed towards a noise-filled robust speech

recognition. We believe that these two subjects are an extensive topic of research in itself and

are therefore beyond the scope of this thesis to review and analyse all relevant topics. We also

take some insights into the SpeechBrain toolkit that has been used to carry out all experiments

in this thesis.

2.1 Automatic Speech Recognition

The history of ASR can be dated back to 1952 when Bell Laboratories at IBM created the first

ever speech recognition system “Audrey” designed to identify numbers. With a very limited

vocabulary in the ‘50s to a vocabulary ranging to thousands in the ‘80s, speech recognition

saw significant progress using Hidden Markov Models (HMM) [11]. HMMs together with the

Baum–Welch algorithm (for parameter estimation) provided the first statistical modelling ap-

proach for speech signals and since then it became a popular paradigm to model the probability

of sounds being actual words. Although artificial neural networks (ANN) were introduced in

the 1940s, it was not until the 1990s, they rose to popularity amongst the speech-processing

community [12]. Multi-layered neural networks were used to discriminate among the limited

vocabulary of words and tested against speaker-dependent and speaker-independent setups [13].

Another approach for HMM-based speech recognition that gained popularity in the 20s made

use of Gaussian mixture models (GMM). In this setup, the state outputs of HMM (or emission

probability) are modelled as mixture models by adding discrete latent variables [14], where each

speech unit is represented as a GMM distribution in an HMM state [15]. Decoding is performed

6
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using the Viterbi algorithm [16] to find the best sequence of most likely states that generate

the given observation. Post-2012 was the era of modern ASR systems that utilized a hybrid

approach i.e. combination of HMMs and deep neural networks (DNN). It excelled performance

of then most existing systems in terms of accuracy and latency. Here we review this approach

thoroughly.

DNN-HMM: a hybrid approach for speech recognition A hybrid ASR system consti-

tutes of HMM and DNN used in combination to perform speech recognition. Unlike a GMM-

HMM framework for speech recognition that uses GMMs to estimate observation probabilities

of HMM states, DNN-HMM employs DNN to estimate state observation probabilities. It uses

multi-layered neural networks to develop strong and complex feature learning ability for acoustic

frames [17] and HMM models the sequential time-varying property of speech signals. Amongst

these, DNN-HMM based systems have the advantage of efficient decoding using the Viterbi

algorithm. Currently, most hybrid ASR systems use ANNs as a label classifier- labelling each

speech frame to phoneme. However, DNNs need a large amount of training data means more

demanding computing resources. It can have a highly non-convex objective function leading

to a suboptimal local minima [18]. [19] shows a word error rate (WER) of 18.5 on SWITCH-

BOARD (test set 1) using the DNN-HMM approach compared to traditional GMM-HMM with

a WER of 27.4%. Another work by [18] used DNN-HMM for speech emotion recognition on

eNTERFACE’05 dataset, showed an improvement in emotion recognition accuracy from 42.22%

(GMM-HMM) to 53.89% using 6 hidden layers and following discriminative training approach.

Recently end-to-end (E2E) based modeling approaches have been increasingly gaining traction

among speech data miners. A non-modularized ASR system comprises of acoustic model, pro-

nunciation model, and language model (LM) and they have to be trained independently each

with a different objective function. Presumably, a global optimum is not guaranteed, and an

error in one component may not behave well with errors in another component, and this leads

to unsatisfactory performance. This motivated researchers to come up with a way that replaces

all these components by training a single model. Hence the name- E2E i.e. map a sequence of

small acoustic frames directly into a sequence of smallest linguistic units like phonemes. E2E

models have made key contributions to ASR and the credit goes to not just one but a family

of different approaches (all DNN based). The foundation of our work is based on E2E, and we

use this as a base reference throughout the thesis. Here we review this approach briefly while a

more detailed study has been conducted in Chapter 3.

E2E approach for speech recognition The most commonly used approaches for E2E

ASR are- (i) Connectionist temporal classification (CTC), (ii) Attention-based Encoder-Decoder

models, and (iii) Recurrent neural network (RNN)-Transducer. CTC [20] although introduced
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in 2006, became a widely used algorithm for ASR after 2016. In a traditional ASR system,

fixed alignments are obtained using the forced alignments of acoustic frames with the phones.

However, such alignments are absent in E2E systems. CTC addresses this issue by modelling

the probability distribution at each time step over all possible phones including a blank label

[21]. [22] proposed a system with a CTC-based scoring function to perform a character-level

ASR. The system is based on bidirectional LSTM-RNN and trained on a full 81 hrs of Wall

Street Journal (WSJ) corpus. Later work focused on training on a significantly larger dataset

and incorporating pre-trained language models during decoding and enabling distributed train-

ing across multi-GPUs for scaled-up performance [23]. Another work by [24] adopted the same

architecture- bidirectional LSTM-RNN network and CTC loss, but trained on about 125K hours

of audio data on word level to achieve similar WER as the existing system without using an

LM. Attention-based Encoder-Decoder models [25], [26] have become a prominent and most

widely used approach in ASR since 2015 (also known as Listen, Attend and Spell (LAS) mod-

els). It consists of an encoder (analogous to the acoustic model), an attention mechanism, and

a decoder. The encoder computes high-level features from the input acoustic frames, and the

attention module (analogous to the alignment model in HMM) computes attention weights to

form a context vector (to identify the encoded frames that are relevant to the current output).

The decoder (analogous to the pronunciation model and LM) further takes in the context vector

and its last output to predict each output label as a function of the previous label. Further study

by [27] shows that attention-based models perform closely to other E2E models on dictation

tasks and slightly outperform the baseline on the Google VoiceSearch test set. RNN-transducer

(RNN-T) [28], is yet another E2E model for ASR proposed in 2012. It consists of an encoder,

a prediction network, a joint network, and a softmax. Analogous to an acoustic model in a

non-modularized ASR paradigm, the encoder performs a high-level feature representation, and

the prediction network takes previous predictions and generates text embeddings. The joint

model further combines encoder output and text embeddings and the combined output is fol-

lowed by a softmax layer. At each time step, the model either predicts a sub-word unit or a

blank. Later work [29] focuses on further model optimization in terms of performance and faster

training. Another work by [30] jointly models End-Of-Utterance (EOU) with ASR in RNN-T

for better latency. These works show that RNN-transducer models are better than CTC or

attention-based models but still lack popularity. RNN transducers suffer from high-memory

requirements to compute the posteriors of a grid of alignments composed by the encoder and

prediction network. Recent works have focused more on optimizing these memory issues with

more advanced network structures.
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2.2 Speech Enhancement

In real-world conditions, audio data acquisition often involves speech signals getting corrupted

due to noises around them which degrade the audio quality and make it difficult for a listener to

comprehend its meaning. With speech enhancement, we aim to enhance the quality of spoken

audio and extract a cleaner speech signal from a noisy mixture. The enhanced speech signal

can be used for further downstream tasks, e.g. ASR. One of the classical approaches for speech

enhancement is the classical method that operates in the frequency domain. The signal is

passed through a short-time Fourier transform (STFT) to obtain short-time spectral features

and phase. These spectral features are used by noise estimators and gain estimators to estimate

the magnitude of the noise spectrum. The estimated noisy spectrum is further convoluted with

the noisy spectral features to extract clean speech from the noisy speech. The obtained clean

spectral features go through inverse- STFT to obtain the signal in the time domain. Below we

review the most well-known approaches for speech enhancement– traditional approaches and

recent SOTA deep-learning-based methods.

Classical approaches : One of the well-known algorithms for speech enhancement is spectral

subtraction [31] which estimates the noise power spectrum by averaging over the input noise

spectra from several frames like a moving average filter. Once the noise spectrum is obtained, it

is subtracted from the noisy speech spectrum to retrieve the clean signal. The most addressed

shortcoming of spectral subtraction is signal distortion i.e. if too much is subtracted, the speech

signal is lost and if too less is subtracted, the speech signal is left noisy. Wiener filter [32]

is another traditional alternative to spectral subtraction. The fundamental idea of Wiener

filtering is that it minimizes the mean-squared error between the reconstructed spectrum and

the original spectrum, using some statistical characterization of the original clean spectrum.

Speech enhancement becomes challenging when only a noise-corrupted speech signal is present.

Addressing this, [33] proposed a Kalman filtering-based method for speech enhancement that

leverages the speech production model. Other statistical approaches to speech enhancement are

based on Bayesian statistics e.g minimum mean-square short-time spectral amplitude estimator

(MMSE STSA) [34]. Unlike spectral subtraction and Wiener filtering which introduce musical

noise and residual noise respectively, MMSE-STSA results in enhanced speech without any

musical or residual noise. This method focuses on deriving the MMSE STSA estimator and

minimizing STSA from the noise spectrum.

Deep learning-based methods : One of the obvious expectations from a speech enhance-

ment is its generalization to unseen conditions. Most classical approaches can not handle unseen

noise types and unseen SNR levels. Performance becomes unsatisfactorily low when such a sys-

tem is exposed to hostile environments with low SNR levels or when there are speaker and
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language variances. Therefore systems have to be trained on large datasets that are rich in sev-

eral noise types and diverse with multiple speakers. Recently proposed enhancement methods

effectively address these issues using SOTA deep-neural networks. Proposed in 2019- based on

generative adversarial network (GAN), [35] attempts to use metric scores to optimize generators

to cheat the discriminators into reaching the desired score(s), while the discriminator tries not

to be cheated by learning the true score. It basically tries to learn the surrogate function of the

evaluation metric to achieve multi-metric assignments. Evaluated on the TIMIT dataset with

10 noise types and mixed with 5 SNR levels (-10 dB to 10 dB), MetricGAN achieves an average

PESQ score of 2.133 (metric assignment- PESQ) and 2.025 (metric assignment- STOI) (these

evaluation metrics have been discussed at length in Chapter 3) on the test set. In 2021, two

improvements of this approach were proposed- MetricGAN-unsupervised [36] and MetricGAN+

[37]. The former approach uses an unsupervised mechanism for speech enhancement where only

noisy (natural or artificial) audio is required. This is done by optimizing speech quality met-

rics like DNSMOS and SRMR (speech-to-reverberation modulation energy ratio). A standard

method would train a supervised model using clean-noisy pairs, but this approach used only

noisy audio. In the later improvement- MetricGAN+, rather than learning metrics for clean

speech, we learn metrics for noisy speech when training discriminator. The authors also reuse

the data generated from previous epochs to train the discriminator so that it does not forget

the behavior of the target evaluation metric. [38] proposed a novel method for noise robust

speech recognition called as MimicLoss. It employs unique loss functions that help the speech

enhancement model to produce output interpretable by the acoustic model by trying to mimic

its behavior under clean speech. Further improved in [39] attempts to improve speech intelligi-

bility further. It compares the outputs of the perceptual acoustic model with clean vs denoised

speech as input. The perceptual model is used to judge the perceptual quality of the outputs

of the enhancement model. More recent work [40] uses a self-attention type Transformer-based

network for speech separation (currently SOTA model) (an in-depth description can be found

in Chapter 3, Section 3.2.1). It uses a learnable masking-based architecture where it learns a

deep masking network based on self-attention, which estimates element-wise masks and these

masks are used for separation. The model is trained on the WSJ0-2mix dataset and achieves

a scale-invariant signal-to-noise ratio (SI-SNR) of 22.3 dB. We use this approach for speech

enhancement i.e. recover clean speech from a noisy speech signal.

2.3 SpeechBrain

SpeechBrain [41] is a general-purpose open-source conversational AI toolkit designed to replicate

the functionality of the human brain. It is focused more on speeding research and development

of speech and language processing. Its primary consumers are not just speech researchers,

but the entire machine learning community who wish to integrate their models into various
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speech pipelines and evaluate them against current state-of-the-art systems. The core imple-

mentation of SpeechBrain is based on the PyTorch toolkit and its key features are its strength-

being flexible, replicable, easy to use, modular, efficient, and well-documented. It can perform

tasks ranging from ASR, speaker recognition, diarization tasks, speech enhancement, dialogue

processing, etc. – similar to a human brain.

The architecture of SpeechBrain consists of a Brain class defined within core.py script that

contains all necessary steps to train and evaluate a model using inversion of control fashion. This

approach offers the advantage of being more explicit, and abstract and eliminating dependencies.

The building blocks of Brain class is made up of several functions listed below-

1. compute_forward : compute forward pass for given batch.

2. compute_objective : compute loss for given batch.

3. on_stage_start : gets called when a stage (train, test, or valid) starts, typically used to

initialize error metrics.

4. on_stage_end : gets called when stage ends. It computes the error metrics initialized above,

updates the learning rate, updates losses, and prints training logs.

5. fit() : iterates over epochs and dataset- basically fitting over the train set and valid set

to improve the objective and save the model checkpoint.

6. evaluate() : usually called at the end of the training, it iterates over the test set and

evaluates the brain performance.

SpeechBrain dataloader uses a basic PyTorch data-loading technique wherein it addresses usual

problems in time-series sequences (like speech signals) like variable length and large and complex

datasets. Its DynamicItemDataset offers a unique and flexible approach to dynamically fetch and

transform data before beginning a training loop. The toolkit is easily compatible with datasets

annotated in JSON or CSV format, which usually contains text transcripts, phonemes, and

path-to-wave files. For all tasks and recipes defined within SpeechBrain, one can train a model

simply by calling the training script followed by a human-readable SpeechBrain-developed for-

mat hyperparameter file- python train.py hparams.yaml . The hyperparameter file is not just a plain

text file with a list of hyperparameters, rather we declare variables and objects with their cor-

responding arguments that we use. These objects control the data loading pipeline, model

architecture, decoding, evaluation metric, etc.

In this work, not only do we make extensive use of the SpeechBrain toolkit but also actively

contribute our trained models and results for each experiment in a systematic manner. For each

result shown in this work, we share full training logs for replicability purposes.
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Technical Background

In this chapter, we dive deep into the technical nuances of speech recognition and speech en-

hancement. We introduce popular End2End speech recognition models like Connectionist Tem-

poral Classification (CTC), Attention-based Encoder-Decoder models, and End2End architec-

tures that we have used in this thesis. Further, we talk about methods for speech enhancement

that have been used in our work.

3.1 End2End Automatic Speech Recognition

End2End modeling approach in speech recognition directly outputs a sequence of tokens using

a single network that is trained on a single objective function- unlike traditional hybrid models

that consists of multiple components each being optimized separately. It completely eliminates

the need to perform multi-stage training and results in a simpler system where the entire focus

of the network is to act upon a single objective. It has fewer parameters than traditional

models making them less prone to overfitting. This makes End2End models simple, flexible,

and outperform traditional hybrid models. In this section, we discuss a few End2End models,

popular End2End architectures that have been SOTA at the time of writing, and evaluation

metrics adopted in this work to judge the quality of speech recognizers.

3.1.1 End2end Models

The basic building block of an End2End model constitutes an Encoder, an alignment block,

and a decoder. The encoder takes in raw audio data to map feature representation vectors into

some hidden representations using convolutional neural networks (CNN) or recurrent neural

networks (RNN). The aligner or the alignment block aligns the input acoustic frames with the

output tokens (character or word sequence) and lastly, the decoder uses encoder output (hidden

representations) to predict the final sequence of tokens. It uses the aligner’s output to predict

12
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the corresponding text of an acoustic frame. The popular End2End models are (i) CTC (ii)

Attention-based Encoder-Decoder model

Connectionist Temporal Classification CTC is designed to map or align input speech

frames with text transcriptions (or output labels). It uses dynamic programming to predict the

sequence of labels. But what does an alignment do? Given an acoustic frame, it tells us the

corresponding word (or character) spoken in that frame. This alignment is necessary because

the length of the input sequence is much larger than the output labels. Without an alignment,

the model would fail to learn the correct mapping between input and output.

CTC models the probability distribution at each time step over all possible alignments. Input

acoustic frames have many silent frames and also consist of repeated characters (e.g. hello). It

is often the case that the output label is smaller than the input sequence. Therefore, to solve

these issues, a blank token is introduced which is used to represent a null transition between

different output labels. This token does not provide any acoustic or temporal information but

allows the model to insert or delete output labels to perform the alignment of input frames with

labels.

It is important to note a few important properties of CTC alignment. Once the alignment

is done, the length of the aligned sequence is the same as the input sequence which results

from merging subsequent tokens and discarding blank token. Moreover, the nature of such an

alignment is many-to-one – meaning one or more input frames are aligned to a single output

label.

Here we describe the step-wise training and decoding process

1. CTC training- CTC works by maximizing a conditional probability p(Y |X) to an output

label Y for a given input X

p(Y |X) =
∑

A∈AX,Y

T∏
t=1

pt(at|X) (3.1)

The above equation [21] indicates the probability of an alignment at at time step t for a

given input. The above objective function is marginalized over the set of all alignments

A ∈ AX,Y between the input acoustic frames and the output labels. During training,

the input sequence is fed into an RNN network after which it computes the probability

for each output (including blank token) pt(at|X) at each time-step. This gives us a

matrix of probabilities (the row equals all possible outputs and the column equals the

number of inputs). CTC then computes the probability of all possible valid alignments and

marginalizes them to get the final distribution i.e. probability of output for a given input.
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This is visualized in Figure 3.1. With the ground truth already given, it further employs a

loss function where the loss is computed, and error gradients are back-propagated, thereby

updating the network weights.

Figure 3.1: This illustration [21] explains how CTC determines the conditional probability of
an output label for a given input sequence.

2. CTC decoding- Once the model is trained, the task is to determine the most probable

output sequence for a test input. Basically, we are interested in finding an alignment that

maximizes the conditional probability p(Y |X).

Y ∗ = argmax
Y

p(Y |X) (3.2)

Y ∗ = argmax
Y

T∏
t=1

pt(at|X) (3.3)

This is done using beam search. It computes a new set of hypotheses at each time step

and in the next time step the last hypothesis is extended to obtain a new set of hypothe-

ses, keeping only the top candidate with maximum probabilities. However, keeping all

alignments in the beam can be a computationally expensive process. The standard beam

search is modified in CTC to handle multiple alignments by merging repeated tokens and

getting rid of blank tokens whereafter only the output prefix is kept in the beam. In

Figure: 3.2, in the third time step, we merge multiple extensions to one hypothesis, and

this is further extended to a prefix [a] with two outputs– [a] and [a, a].
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Figure 3.2: Illustration from [21]– it explains how CTC decoding uses a modified beam search
algorithm to determine the most likely output sequence.

Attention-based Encoder-Decoder model The attention-based encoder-decoder (AED)

model is another model used for speech recognition that leverages the attention mechanism to

attend to different parts of the input speech and improve the quality of speech recognition.

This architecture is frequently used as a sequence-to-sequence (Seq2Seq) model with the idea of

transforming a variable-length input sequence into a variable-length output sequence. Although

the seq2seq model has been successfully applied to many NLP tasks, it turned out not to be

well-suited for longer input sequences. Specifically, the contextualized representation obtained

from the encoder would prefer later information in an input sequence while forgetting those

from the beginning. The solution for this problem is to use the attention mechanism, which

allows the decoder to attend to all input tokens during each decoding step instead of a single

contextualized representation. There are various types of this mechanism, but the overall idea is

to calculate the input token’s attention scores for each decoding step individually. These scores,

ideally, tell the decoder which information is relevant for the current step.







Figure 3.3: Block diagram of attention based encoder-decoder model [42]

As shown in Figure 3.3 it consists of an encoder network, an attention mechanism, and a decoder

network. Specifically, the steps of the model are as follows:
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1. The encoder uses a bidirectional LSTM that processes the input acoustic features into a

sequence of high-level hidden vector representation. In Section 3.1.2 we shall discuss our

encoder architecture in detail.

h1:T = Enc(x1:T ) (3.4)

h = [h1, h2, · · · , hT ] (3.5)

2. Next, attention mechanism is applied over encoded representations and previous decoder

output to decide which part of the input sequence is relevant for the current decoding

step. It generates a weighted sum of encoder’s hidden state– context vector cu.

cu = Attn(h, du−1) (3.6)

3. The decoder then takes the context vector and previously generated output label to com-

pute the probability of an output label P (yu|x1:T , y1:u−1) given previous label outputs.

du = Dec(cu, yu−1) (3.7)

Softmax(du) = P (yu|x1:T , y1:u−1) (3.8)

There are different types of attention mechanisms used in speech recognition like location-aware

attention, content-based attention, and key-value-based attention. However, in our work, we

use a location-based attention mechanism [43] that uses learnable attention parameters capable

to track the absolute location of contents in the input sequence that the decoder should focus

on.

3.1.2 End2end Architectures

When it comes to building a speech recognition pipeline encoder plays a crucial role in mapping

input acoustic frames to high-level feature representation. The way encoding is done has a pro-

portional impact on the accuracy of the desired system. It should form compact representations

capturing essential features and information for transcription. In this work, we use the popular

CRDNN architecture ([44], [45]) and SOTA wav2vec 2.0 [8] architecture as encoders for our

ASR pipeline. However, for comparison purposes, we include the WavLM and SOTA Whisper

model but do not discuss them in detail in our work.
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Figure 3.4: CRDNN architecture comprising of 2 CNN blocks, 1 RNN block, and 1 dense-
neural network (DNN) block, followed by a linear layer and a softmax.

CRDNN CRDNN or convolutional, recurrent, and dense-neural network is a complex neural

network often used in cases where the goal is to capture spectral as well as temporal dependencies

like speech recognition. As shown in Figure 3.4 the CRDNN architecture is a combination of

CNN blocks, RNN, and a DNN block followed by a linear and a softmax layer.

The input to CNN is 40 mel-filterbank coefficients. The CNN layer performs spectral modeling

using filters to convolve over the input speech features. In our encoder architecture, we use

two such CNN layers with a channel size of (128, 256) to extract high-level speech features.

These features are then fed into an RNN block that performs temporal modeling. The RNN

block is made of 4 bidirectional-LSTM layers with 1024 neurons in each layer. It performs

time-series analysis on the output sequence and extracts key contextual information. It also

captures the long-range dependencies in the input signal. RNN output is passed through DNN

layers to better capture the non-linear relationship between input speech features and output

transcriptions. It transforms the RNN output into a probability distribution over the output

transcripts. Since this probability distribution is in a higher dimensional space, we use a linear
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layer to project the outputs of DNN into a lower dimension and pass it through softmax to get

the probability of the predicted transcript which are sub-word units (size=1000).

For decoding, we use an attentional RNN decoder of type gated recurrent unit (GRU). Beam-

search coupled with an RNN-based language model is used on top of the decoding probabilities.

The sub-word units estimated with byte-pairwise encoding (BPE) are used as basic recognition

tokens. We describe the model parameters and hyper-parameters in Section: 5.1.

wav2vec 2.0 This model used in our work is based on [8] which is an extension of wav2vec

[46]. Wav2vec is a self-supervised approach for learning speech representations using unlabelled

data. As interesting as it sounds, the functionality is similar to BERT (bidirectional encoder

representations from Transformer where a part of the speech representation is masked and the

model is pre-trained to predict the small speech unit for the masked parts. Along with this, the

model is also trained to identify the predicted speech units. As speech signals are continuous

time series with no clear separation between subsequent words, the model learns speech units

of 25 ms long. This enables learning high-level contextualized representations. The pre-training

is done on a large amount of unlabelled and unannotated audio data. In order to perform

downstream tasks, these contextualized representations are then refined using a small labeled

data set, reducing the need for large amounts of annotated text in ASR tasks.

Wav2vec2.0 on the other hand, is an improved, more accurate, and robust successor of wav2vec.

It uses deeper neural network architecture with more layers and is trained on diverse (rich

in speaker and speech variabilities) and increased amounts of data. The framework has been

illustrated in Figure: 3.5 - let us try to understand step by step:

Figure 3.5: Wav2vec2.0 framework [8]

1. Encoder: The first element of the network is a multi-layer CNN feature encoder, which

inputs raw audio and produces intermediate representations. Given an input audio stream

X , the encoding function f is determined by f : X → Z.
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2. Outputs of CNN are latent speech representations Z = [z1, z2, · · · , zT ]. The representa-

tions are ‘latent’ due to their ability to capture important hidden pieces of information

which are not directly observable in the input audio but can be inferred by the model.

They are compressed forms of the input, thus reducing the data dimensionality.

3. Transformer network: The latent representations are then fed into a Transformer net-

work, defined by g : Z → C, with a self-attention mechanism that captures long-range

dependencies. Additionally, it employs relative positional embeddings (different from the

usual absolute positional embeddings) to capture the relative positions of speech units in

the input audio. It helps the model to learn the relationship between different phonemes

or acoustic units. Output to this block is a vector of contextualized representations

[c1, c2, · · · , cT ].

4. Quantization module: Lastly, the latent speech representations are discretized into

fixed-length vectors since text transcripts are also a discreet set of finite elements. This

quantization helps generate discriminative speech embeddings which are used for con-

trastive loss computation.

The first step in pre-training involves covering certain portions of the speech representations

and then training the model to predict what has been masked. Basically, the model learns to

predict the quantized representations for each masked time step similar to the ones generated

in the quantization module. As a training objective, contrastive loss Lm is used. The idea here

is to maximize agreement between similar representations and minimize agreement between

dissimilar representations.

Lm = − log
exp (sim(ct,qt)/K)∑

q̃∼Qt
exp (sim(ct, q̃t)/K)

(3.9)

Let’s take a closer look-

• Numerator : given true quantized representation qt and context representation ct, we

compute cosine similarity between these: sim(ct,qt). Then we normalize this with total

number of predicted quantized candidates (or distractors) K to get a probability score.

• Denominator : compute a normalized similarity score between the predicted quantized

representation q̃t and context representation. This is then marginalized over the set of all

distractors:
∑

q̃∼Qt
exp (sim(ct, q̃t))
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Figure 3.6: Wav2vec2.0 architecture

After the model is pre-trained on a large unlabeled dataset, it is then fine-tuned on a task-specific

labeled dataset by minimizing the CTC loss function (see CTC in Section: 3.1.1). Fine-tuning

helps update the model’s weight and guide the model towards a specific learning task as desired.

3.1.3 Evaluation metrics

To assess the quality of transcripts generated by a speech recognizer, we rely primarily on two

evaluation metrics- word error rate (WER) and character error rate (CER). These metric scores

compare the gold transcript and the predicted transcript and tell us the number of words/chars

incorrectly recognized. WER is computed using the formula below:

WER =
I + S +D

N
(3.10)

where

• I: total counts of insertions

• S: total counts of substitutions

• D: total counts of deletions

• N : total counts of words in the reference text

To compute CER, the predicted sequence of words is converted into a sequence of characters,

and the above formula is used.



Chapter 3. Technical Background 21

3.2 Single Channel Speech Enhancement

Single-channel speech enhancement (SE) involves improving audio intelligibility and the quality

of audio recordings done on a single channel. As discussed in Section 2.2 traditional methods

for speech enhancement fail when exposed to unknown noise types and low SNR noise levels.

Recent years have seen deep-neural networks to be very successful for SE tasks. In this work,

we perform SE on mono audio recordings using SepFormer– a Transformer-based RNN-free

network [40] for speech separation while preserving the speech content and intelligibility to later

perform speech recognition.

Figure 3.7: A high-level block diagram of SepFoprmer architecture.

3.2.1 SepFormer : Transformer-based neural network

SepFormer is a multi-head attention Transformer-based source separation architecture. It adopts

the dual-path RNN (DPRNN) [47] that models long sequential inputs by splitting them into

chunks. DPRNN uses two separate RNNs to model both local dependency within a chunk

as well as global dependency across chunks. Inspired by this, SepFormer replaces RNNs with

Transformer networks to model both short-term and long-term dependencies.

It uses a fully learnable masking-based architecture composed of an encoder, a masking net, and

a decoder. The encoder and decoder blocks are essentially convolutional layers and we learn

a deep-masking network based on self-attention which estimates element-wise masks. These

masks are used by the decoder the reconstruct the enhanced signal in the time domain. Let’s

understand each of these blocks in detail.

Encoder The encoder inputs a noisy audio signal in the time domain that learns STFT

representations using a single-layered convolutional network.

h = ReLU(conv1d(x)) (3.11)
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Masking Network Figure 3.8 illustrates the masking network. The encoder output h is

fed into a normalization layer followed by a linear layer to allow the model to learn complex

non-linear representations. Then chunking with overlapping is applied to the activations to

split the sequence into chunked representations. In the next step, SepFormer is applied to the

sequence of chunked representations (architecture shown in Figure 3.9). As mentioned earlier,

SepFormer is based on DPRNN constituting an IntraTransformer (IntraT), a permute, and an

InterTransformer (InterT) block. IntraT takes in the chunked representations h′ and models the

short-term dependencies, and then permute block permutes its last two dimensions. Further,

InterT is applied to the permuted output to model the long-term dependencies. The combined

operation can be represented as

h′′ = finter
(
P(finter(h

′))
)

(3.12)

Figure 3.8: Masking network

Figure 3.9: SepFormer block diagram that combines IntraTransformer and InterTransformer
to model short-term and long-term dependencies.

The transformer block is shown in Figure 3.10. Let the input be z. First positional embedding

e is added to z to provide additional information about the positions of speech signals in a noisy

mixture. Next, we apply layer normalization followed by multi-head attention. This allows

attending to different parts of the sequence differently. Lastly, a normalization layer followed

by a feed-forward layer is applied to get the output representations. These operations can be

described as-

z′ = z + e (3.13)

z′′ = MHA(LayerNorm(z′)) (3.14)

z′′′ = FF(LayerNorm(z′′ + z′)) + z′′ + z′ (3.15)

The SepFormer block is repeated N times, inside which K Transformer layers are repeated.
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Figure 3.10: Transformer network used by both IntraT and InterT.

Decoder The decoder is a transposed conv1d layer that that inputs the masked represen-

tations mk and encoder output h, and performs an element-wise multiplication. This can be

represented by

ŝk = Conv1d-transposed(mk ∗ h) (3.16)

ŝk = (ŝclean, ŝnoise) (3.17)

where k are the number of sources in the noisy mixture- which in our case is 2 (clean speech

signal and noisy signal).

The model is trained in a supervised fashion using the permutation invariant SI-SNR [48] (see

Section 3.2.2.1 for further details).

starget :=

(
ŝ⊤cleans

)
s

||s||2
(3.18)

enoise := ŝclean − starget (3.19)

SI-SNR := 10 log10

(
||starget||2

||enoise||2

)
(3.20)

where s is the target clean speech signal, ŝclean is the enhanced speech signal, and starget is the

scaled target clean speech signal.

3.2.2 Evaluation metrics

Speech enhancement systems are trained with the purpose of reducing noise and distortions,

thereby improving the quality of speech signals. Primarily, the performance evaluation of a SE

system has two aspects- quality of enhanced speech and its intelligibility. The quality of speech

signal refers to how good or bad is the enhanced signal and whether is it still contaminated with

unwanted noise. While intelligibility refers to how well a listener understands the enhanced

speech signal. Both quality and intelligibility can be measured using subjective and objective

methods. Subjective methods involve human listeners evaluating speech intelligibility by per-

forming listening tests and rating it on a scale of 1 to 5. They are by far the most accurate and

reliable metric to evaluate SE systems. But, such a task is unscalable, resource expensive (both
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in terms of time and money), and requires several native (or fluent) speakers of the language to

ensure the accuracy and reliability of the results. On the other hand, objective evaluation meth-

ods use metrics like signal-to-noise ratio (SNR), signal-to-distortion ratio (SDR), mean opinion

score (MOS), and perceptual evaluation of speech quality (PESQ) to quantify the quality of the

enhanced speech. In this work, we use these objective methods to evaluate our SE systems.

3.2.2.1 SI-SNR & SI-SDR

SI-SNR (scale-invariant signal-to-noise ratio) [48] is a commonly used SE system evaluation

metric. It is based on the signal-to-noise ratio that computes the ratio of the energy of the

target speech signal to the energy difference between the enhanced signal and target signal (see

Equation 3.20). Both the enhanced speech signal and original clean speech signal are normalized

to have zero mean which ensures that the metric is scale-invariant. To have the best possible

enhanced signal, the energy difference ŝclean − starget should be minimum. This indicates that

the higher the SI-SNR value, the better would be enhancement performance. In our work,

we measure the improvement in the SI-SNR value (SI-SNRi) to assess enhanced speech signal

quality.

SI-SNRi = SI-SNR(enhanced, target)− SI-SNR(noisy, target) (3.21)

However, SI-SNR comes with certain limitations- it assumes that the scale of enhanced and

target speech signals are the same and that the noise is stationary in the noisy signal. A

better alternative to SI-SNR is- SI-SDR (scale-invariant signal to distortion ratio) [49]. It is

considered a better metric for evaluating overall how good a speech signal sounds. It accounts

for the scaling of the signals.

SI-SDR = 10 log10

(
||etarget||2

||eres||2

)
(3.22)

SI-SDRi = SI-SDR(enhanced, target)− SI-SDR(noisy, target) (3.23)

where eres is the residual signal and etarget is the scaled target signal.

3.2.2.2 PESQ and STOI

PESQ or Perceptual Evaluation of Speech Quality [50] is a widely accepted standard evaluation

metric for enhanced speech signals. Developed by International Telecommunication Union (ITU)

in 2000, its initial purpose was to assess audio quality in telecommunications channels. But

today, it is very popular in speech enhancement and noise reduction tasks. It is an intrusive

metric as it compares reference clean speech signals and enhanced speech signals. Based on the
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spectral comparison, it measures the perceptual difference between the clean and the enhanced

signal by analyzing the level of degradation in the enhanced signal. It is measured on a scale of

-0.5 to 4.5 with 4.5 being the best quality. In this work, we use the PESQ package as published

on PyPi [51].

Short-time objective intelligibility (STOI) [52] is another common metric used to estimate the

quality of enhanced speech signals. It is an intrusive metric- a function of both clean and

enhanced signals. It relies upon spectro-temporal characteristics of short envelopes (300-400

ms) to measure the intelligibility taking into account the effect of masking i.e. reduction in the

audibility of softer sound in presence of some louder sound. It is measured on a scale of 0-1

with a high score indicating better intelligibility.

3.2.2.3 DNSMOS P.835

The above-discussed conventional metrics are intrusive as they rely on a “gold-standard” refer-

ence signal. However, in real-life scenarios, we often do not have access to clean recordings and

this makes the evaluation of speech enhancement tasks difficult. DNSMOS [53, 54], - deep noise

suppression (DNS)- mean opinion score (MOS) was proposed in 2021 to evaluate and rank the

submissions in the deep-noise suppression challenge. It is a non-intrusive evaluation metric as

it does not need the reference clean speech signals and provides results with a high correlation

to human evaluation. It uses a single-layered convolutional network to train a model on human

ratings obtained from ITU-T P.808 [55]. It computes 3 scores– SIG (speech quality), BAK

(background noise quality), and OVRL (overall quality) each on a scale of 1 to 5, with 5 being

the best quality.
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Dataset Description

4.1 Related Corpora

To improve the accuracy of speech recognition systems in noisy and reverberant environments,

several corpora have been developed, such as CHIME [56–59], DIRHA [60–63], AMI [64],

VOiCES [65], and COSINE [66]. Among these, CHIME5 [58] and CHIME6 [59] are espe-

cially challenging because it contains conversational speech recorded during a dinner party in

a domestic setting, where noise and reverberations are common. RescueSpeech also contains

conversational speech recorded in challenging acoustic environments, but the scenario addressed

in this corpus is unique and different from a dinner party. The acoustic conditions, emotions,

and lexicon used in RescueSpeech are distinct, and thus provide an additional set of challenges

for speech recognition systems.

The noisy version of RescueSpeech (see Section: 4.3) can be utilized to train speech enhancement

systems that are robust in the acoustic conditions present in the Search and Rescue (SAR)

domain. There are numerous datasets that have been released for speech enhancement purposes,

including the deep-noise suppression (DNS) dataset [67], VoiceBank-DEMAND corpus [68], and

WHAM! and WHAMR! corpora [69], all of which are helpful for training speech enhancement

models. However, the key difference with RescueSpeech is that it has been specifically designed

for the SAR domain, where characteristic sounds such as sirens, radio signals, helicopters,

trucks, and others affect the recordings. This unique characteristic of RescueSpeech makes it

an especially valuable resource for training speech enhancement systems that can perform well

in SAR environments.

4.2 General Training Data

Speech recognizers and enhancement systems backed with DNN require thousands of hours

of speech data to compete against human-level accuracy. Our speech recognizers– CRDNN,

26
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Table 4.1: Distribution of sentences and hours in the German CommonVoice10.0 and DNS4
dataset.

CommonVoice10.0 DNS4

HRS #Utts. HRS #Utts.

Train 739.17 466189 1317 1186019
Valid 26.97 16067 6.67 5965
Test 27.15 16067 5.17 921

wav2vec2.0 [8], WavLM [9] are pre-trained on full German language Mozilla CommonVoice10.0

corpus [1]. CommonVoice is a massive multilingual speech corpus used primarily for speech

technology research and development. The latest version of the dataset consists a total of 27K

hours of speech data recorded in 108 languages by more than 50,000 speakers around the world,

of which 17K hours are validated. The utterances are recorded in a mono-channel, 16-bit setup

and released in MPEG-3 format with 48K Hz sampling rate. The German CommonVoice10.0

version of the dataset used in this work comprises of total 1200h and 498K utterances. Table:

4.1 briefly describes the train/test/valid data statistics.

Our speech enhancement system is trained on DNS4 dataset [67] which was released as a part

of ICASSP’22- Deep Noise Suppression Challenge-4. DNS47 dataset consists of more than 500h

of clean utterances (read speech, French, Spanish, German, Italian, and Russian speech), noisy

clips (150 noise types) and real and synthetic room-impulse responses (RIRs). Using provided

clean utterances, noisy clips (150 noises types), and RIRs, we generate 1300h of train and 6.7h

of the valid set at varying SNR (from -5 dB to 15 dB with a step of 1 dB), and a DNS-2022

baseline dev set is used as the test set. The Sampling rate is set to 16 kHz and only 30% of

clean speech is convolved with RIR. Table: 4.1 briefly describes the train/test/valid synthesized

data statistics from DNS4 data.

Once the speech recognizers and enhancement models are trained on these datasets, we further

fine-tune them on our RescueSpeech dataset.

4.3 The RescueSpeech Dataset

Our dataset is composed of audio recordings by native speakers of the German language made

during several simulated SAR exercises. The rescue operation simulated accidents like residential

fire, explosions, etc. in presence of a team of rescuers and the conversations were carried out

between team members, radio operators, and the team leader. These conversations loosely adopt

a typical radio style communication wherein the start/end of a conversation is indicated by the

use of certain words, connection quality is relayed, and acceptance or rejection of requests are

7https://github.com/microsoft/DNS-Challenge
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conveyed. Initially captured at 44.1 kHz sampling rate, these recordings are down-sampled to

16 kHz, and further segmented to obtain a set of mono-speaker single-channel audio recordings.

All utterances are also manually transcribed. The total length of the dataset is 1.5h with a

total of 1980 sentences with 1269/400/311 sentences in train/test/valid set. We call it the

RescueSpeech clean dataset. Figure 4.1 shows a histogram plot of the average length of

the segmented utterances with an average length of 2.29 sec. We also created a noisy version
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Figure 4.1: Histogram plot illustrating the average length of utterances in RescueSpeech in
secs.

Table 4.2: Distribution of sentences and hours in the RescueSpeech clean and noisy dataset.

Clean Noisy

HRS #Utts. HRS #Utts.

Train 1.02 1543 4.84 3000
Valid 0.26 387 1.43 900
Test 0.32 484 1.40 900

of RescueSpeech by contaminating our dataset with noisy clips from the AudioSet dataset [70]

that includes five noise types– emergency vehicle siren, breathing, engine, chopper, and static

radio noise. We utilized both real and synthetic room-impulse responses (RIR) (SLR26, SLR27

[71]) to add reverberation as well. We then added noise sequences to generate noisy utterances

with different signal-to-noise ratios (SNR) (from -5 dB to 15 dB with a step of 1 dB). Each

clean utterance is randomly corrupted with one of the noise types to generate 3000/900/900

train/valid/test utterances. We also ensure that a noise utterance used in the train set is only in

this set. This randomness and exclusivity ensure that each split has an equal proportion for each

noise type and that noises in each of the splits are different. This dataset provides a diverse

set of noise and reverberation conditions that enable fine-tuning of our speech-enhancement
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model for improved accuracy on noisy RescueSpeech. We call this the RescueSpeech noisy

dataset.
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Experimental Setup

We explored multiple training strategies to perform noise robust speech recognition. Speech

recognizers and enhancement models are trained on large corpora and then fine-tuned and

evaluated on RescueSpeech data.

5.1 ASR training

We follow two approaches for ASR training- one based on sequence-to-sequence modeling

(seq2seq) and the other on the connectionist temporal classification (CTC) method. Both

of these involve training a tokenizer on train transcripts of CommonVoice10.0 corpus [1] using

SentencePiece [72].

Training scheme : For the seq2seq model, we employ a CRDNN (convolutional, recurrent,

and dense-neural network) architecture [44, 45]. The tokenizer generates unigram tokens, and

we limit the number of token outputs to 1000 in order to ensure that the model is fed with

concise and relevant input. The CRDNN encoder is trained on the full 1200h of the German

CommonVoice10.0 corpus. The network is trained on both CTC and negative log-likelihood

loss with unigrams as basic recognition units. For decoding, we utilize an attentional-Gated

Recurrent Unit (GRU) decoder coupled with a beam search algorithm. Additionally, we incor-

porate an RNN-based language model (LM) to improve the performance of the model. The LM

is trained on total 17M sentences combining Tuda-De2 [73] (8M sents), Leipzig news corpus [74]

(9M sents), and train transcripts of the CommonVoice corpus.

For the CTC-based models, we use wav2vec2.0, and WavLM architecture as encoders for the

ASR pipeline. These encoders use a self-supervised approach for learning high-level contex-

tualized speech representation. The model is trained by minimizing CTC loss with char-

acters as basic recognition units. It needs no language model, and decoding is performed

2https://www.inf.uni-hamburg.de/en/inst/ab/lt/resources/data/acoustic-models.html

30
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using greedy search. For wav2vec2.0 and WavLM we use pre-trained encoders facebook/

wav2vec2-large-xlsr-53-german3 (pre-trained on 56K hours of unlabelled data) and microsoft/

wavlm-large4 (pre-trained on 84K hours of unlabelled data) respectively. These models have

been pre-trained on large amounts of unlabelled data, making them highly effective at recogniz-

ing German speech. To further improve the accuracy of our ASR system, we fine-tuned these

pre-trained models on the full German CommonVoice10.0 corpus. Additionally, we also em-

ploy a pre-trained Whisper [10] model openai/whisper-large-v25 (pre-trained on 680K hours

of multilingual speech data) to benchmark our systems against a competitive state-of-the-art

model. This model uses a Transformer architecture and has achieved impressive results on sev-

eral speech recognition tasks. The pre-trained Whisper model does not need any training with

CommonVoice data. It is only fine-tuned on RescueSpeech dataset.

Model and training parameter, hyperparameters: LM training is based on RNNLM,

which is a combination of embedding layer, RNN, and DNN. The output layer of the model has

32 neurons, which generates the probability distribution over the vocabulary. The Embedding

size is 128, and LeakyReLU activation is used to introduce non-linearity in the model. The

model has 2 layers of RNN, with 2048 neurons in each layer. In addition, the model also has

a single fully connected layer with 512 neurons. The model has 52.5M trainable parameters

and is trained for 20 epochs on a batch size of 64 with a learning rate (LR) of 1e-4. Each

epoch takes approximately 3.3h on a single RTX3090 GPU with 24GB of memory. CRDNN

encoder (see Figure 3.4) combines two blocks of CNN (each block with 2 CNN layers with a

channel size (128, 256)), an RNN block (4 bidirectional LSTM layers with 1024 neurons in each

layer), and 2 blocks of dense-neural network layer, with 512 neurons in each layer. The inputs

are 40-dimensional mel-fiterbank features, and the network is trained with an AdaDelta [75]

optimizer with a learning rate (LR) of 1 (during fine-tuning, we use LR 0.1). The model has

173M trainable parameters and is trained for 25 epochs with a batch size of 8. During testing,

beam search is used with a beam size of 80. Each epoch takes approximately 8h on a single

RTXA6000 GPU with 48GB of memory.

For wav2vec2.0 and WavLM CTC, total trainable parameters are 318M, and training is per-

formed for 45 and 20 epochs, respectively with LR 1e-4 on a batch size 8 using an Adam [76]

optimizer. Each epoch takes approximately 5.5h on a single RTXA6000 GPU with 48GB of

memory.

The Whisper model is fine-tuned for 5 epochs with LR 3e-5 on a batch size 2 using AdamW

optimizer, with 1.5G total trainable parameters. Epoch takes approximately 9 mins on a single

RTXA6000 GPU with 48GB of memory.

3https://huggingface.co/facebook/wav2vec2-large-xlsr-53-german
4https://huggingface.co/microsoft/wavlm-large
5https://huggingface.co/openai/whisper-large-v2
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LR is annealed, and the sampling frequency is set to 16 kHz for all the above approaches. More

details on training and model parameters can be found in the GitHub repository.

5.2 Speech enhancement training

In this work, we perform speech enhancement using SepFormer [40]– a multi-head attention

Transformer-based source separation architecture. It uses a fully learnable masking-based ar-

chitecture composed of an encoder, a masking network, and a decoder. This enhancement model

is trained on 1300h of clean-noisy pairs synthesized from the DNS4 dataset.

It employs an encoder and decoder with 256 convolution filters with kernel size 16, each with

stride 8. The masking network has 2 layers of dual-composition block and a chunk length of 250.

With each clean-noisy pair fixed at 4s in length, the model is trained in a supervised fashion

using scale-invariant SNR (SI-SNR) loss and Adam optimizer with LR of 1.5e-4. We utilize

multi-GPU distributed data-parallel (DDP) training scheme to train the network for 50 epochs

with a batch size of 4. Each epoch takes approximately 9h on 8× RTXA6000 GPU.

5.3 Training strategies

RescueSpeech clean
data

SAR noise mixing
(-5 dB, 15 dB)

RescueSpeech noisy
data

Mix of clean-noisy
RescueSpeech data

(50-50)

Multi-cond. training
using pre-trained

ASR model

clean/noisy WER

Figure 5.1: Training schema for multi-condition training strategy.
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We use various training methods to create a robust speech recognition system that operates in

the SAR (Search and Rescue) domain. These methods are described below:

1. Clean training : After pretraining the ASR and Language Model (LM) models, we fine-

tune them on the RescueSpeech clean dataset. This process helps to adapt the models to

our target domain. We keep the model and training parameters the same as described in

Section 5.1.

2. Multi-condition training : Using the same pre-trained model as above, we perform multi-

condition training, which involves training the ASR model on an equal mix of clean and

noisy audio from the RescueSpeech noisy dataset (see Figure 5.1). By doing this, the

model can learn to adapt to different noises present in the utterances, which helps it to

perform speech recognition. This method forms the baseline for all our results. We set

the learning rate (LR) to 0.1 and keep other parameters the same as above.

3. Model-combination I: Independent training : We pre-train a speech enhancement model

and then fine-tune it on the RescueSpeech noisy dataset. This model is then integrated

with the ASR model trained in the clean training stage to perform noise-robust speech

recognition. In this stage, we freeze the enhancement model. This has been illustrated in

Figure 5.2.

Fine-tuned
enhancement Model

(frozen)

Fine-tuned ASR
models

WER

RescueSpeech noisy
data

Metrics like SI-SNRi,
SDRi,

PESQ & STOI

Enhanced wavs

Pre-trained
enhancement model

(SepFormer)

RescueSpeech
clean-noisy data

Figure 5.2: Training schema for independent model training strategy.

4. Model-combination II: Joint training : This is a continuation of the previous stage, where

we follow a joint-training approach. We unfreeze the enhancement model and allow gra-

dients from the ASR to propagate back to the speech enhancement model. Updating the



Chapter 5. Experimental Setup 34

weights of the model in this way enables it to generate output that is as clean as possible,

as required by the ASR model. This has been illustrated in Figure 5.3.

Fine-tuned
enhancement Model

(un-frozen)

Fine-tuned ASR
models

WER

RescueSpeech noisy
data

Metrics like SI-SNRi,
SDRi,

PESQ & STOI

Loss is shared and
gradients are updated

Figure 5.3: Training schema for joint model training strategy.
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Results and Discussions

6.1 Pre-training Performance

In the first step, we separately pre-train ASR and speech enhancement models. Our ASR

models– CRDNN, wav2vec2.0, and WavLM are pre-trained on full German CommonVoice10.0

corpus. Table 6.1 presents the evaluated performance of these models. CRDNN model per-

forms the best with a WER of 7.92% followed by WavLM with a WER of 8.98%. CRDNN’s

performance is competitive against WavLM and wav2vec2 even though they have been first

pre-trained on thousands of hours of unlabelled data and later fine-tuned on CommonVoice cor-

pus, because CRDNN leverages language model during decoding that captures the statistical

patterns and structure of the language and correct errors made by the acoustic model, thus

improving the overall accuracy in terms of WER.

Additionally, we pre-train a speech enhancement model, SepFormer, on the DNS4 dataset.

Table 6.2 shows evaluation results using DNSMOS on the DNS-4 development set against three

metrics– SIG, BAK, and OVRL, with a higher score indicating better quality. In DNS challenge-

4, NSNet2 [77] is used as the baseline model. Our model SepFormer performed below the

baseline model, failing to improve the perceived quality of the noisy speech signals. This lack

of improvement can be attributed to the fact that SepFormer is a large model, and training it

with such a large dataset requires a significant amount of computational resources. Despite our

initial plan to train it for 150 epochs, we were only able to complete 50 epochs due to resource

constraints.

Table 6.1: Comparison of WER on CommonVoice test set for three models: CRDNN,
wav2vec2.0-large, WavLM-large at ASR pre-training stage.

ASR Model WER

CRDNN 7.92

Wav2vec2 9.54

WavLM 8.98

35
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Table 6.2: Evaluation on DNS4 2022 baseline dev set using DNSMOS [53]

Model SIG BAK OVRL

Noisy 2.984 2.560 2.205
NSNet2 [77] 3.014 3.942 2.712

SepFormer 2.999 3.076 2.437

6.2 ASR Performance

As a first attempt to noise robust speech recognition, we created a simple pipeline consisting

solely of an ASR model, with no speech enhancement utilized in the front-end. Table 6.3 provides

a comparison of different ASR models used on both clean and noisy audio recordings from

the RescueSpeech dataset. The models included in the comparison are CRDNN, wav2vec2.0,

WavLM, and Whisper. During the pre-training stage, all models (except Whisper) utilized only

the CommonVoice dataset. However, during the clean training and multi-condition fine-tuning

stage, the RescueSpeech dataset was used.

Table 6.3: Comparison of test WERs for CRDNN, wav2vec2.0-large, WavLM-large, and
whisper-large-v2 models using different training strategies on clean and noisy speech inputs

from the RescueSpeech dataset.

ASR Model clean noisy

Pre-training
CRDNN 57.05 86.48

Wav2vec2 50.03 86.45

WavLM 49.81 83.82

Whisper 28.41 61.86

Clean training

CRDNN 24.47 59.52

Wav2vec2 22.16 65.65

WavLM 21.67 61.13

Whisper 28.39 56.60

Multi-cond. training

CRDNN 27.45 57.95

Wav2vec2 23.91 60.61

WavLM 22.48 55.53

Whisper 29.75 62.53

Unsurprisingly, the clean training approach is the most effective when tested on clean audio

recordings. The top-performing model in this scenario is WavLM, which achieved a WER of

21.67%. On the other hand, multi-condition training proved to be a superior strategy when
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dealing with noisy recordings. In this scenario, the best model is again WavLM, which achieved

a WER of 55.53%. The performance gap with clean signals, highlights one more time the signifi-

cant decline in recognition performance when dealing with challenging acoustic conditions, even

for models that were pre-trained using state-of-the-art self-supervised techniques like wav2vec,

wavLM, and Whisper (the latter of which is even semi-supervised).
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Figure 6.1: Log-power spectrogram of clean, noisy, and SepFormer-enhanced utterances for
emergency vehicle siren, and chopper noise types at -5 dB SNR.
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Figure 6.2: Log-power spectrogram of clean, noisy, and SepFormer-enhanced utterances for
engine, static-radio, and breathing noise types at -5 dB SNR.



Chapter 6. Results and Discussions 39

6.2.1 Combining ASR and Speech Enhancement

In the further attempts to noise robust speech recognition, our pipeline consisted of a simple

combination of a speech enhancement model and a speech recognizer model. Table 6.4 displays

the speech enhancement results obtained by incorporating a speech recognizer into the pipeline.

Table 6.4: Speech enhancement performance on the RescueSpeech noisy test inputs when
combining speech enhancement and speech recognition (Model Comb. I vs Model Comb. II).

Model
Comb. I

Model Comb. II

CRDNN wav2vec2 WavLM Whisper

SI-SNRi 5.624 6.145 5.913 5.959 6.137
SDRi 5.278 5.668 5.465 5.475 5.686
PESQ 2.249 2.304 2.259 2.270 2.296
STOI 0.816 0.823 0.822 0.820 0.822

Table 6.5: Word-Error-Rate (WER%) achieved with independent training (Model Comb. I )
and joint training (Model Comb. II) of the speech enhancement and ASR modules.

ASR Model Model Comb. I Model Comb. II

CRDNN 56.62 56.02

Wav2vec2 50.39 51.58

WavLM 48.25 50.04

Whisper 29.97 33.19

In Section 5.3, we explored two approaches: independent training (Model Comb. I) and joint

training (Model Comb. II). The joint training approach resulted in improvements across all

considered speech enhancement metrics (SI-SNRi, SDRi, PESQ, STOI) and all ASR modules

(CRDNN, Wav2vec2, WavLM, Whisper). Table 6.5 presents the final speech recognition output

at the end of the pipeline. Interestingly, a simple combination of the speech enhancement and

speech recognition modules performed better than joint training. It is important to note that the

speech recognizer is fine-tuned using speech enhanced by the frozen Sepformer. We hypothesize

that processing signals from a frozen speech enhancement module makes it easier for the ASR

to converge well, given the limited dataset available for fine-tuning. The ASR does not have to

continuously adapt to the new speech enhancement output, as in the joint training case. Overall,

the best-performing model is the combination of the SepFormer with the Whisper ASR, which

achieved a WER of 29.97%.

Figure 6.1, 6.2 shows the log-power spectrogram for noisy audio recordings consisting of emer-

gency vehicle siren, chopper noise, engine, static-radio, and breathing noise with -5 dB SNR,

using the SepFormer model fine-tuned on the RescueSpeech noisy dataset. From a qualitative
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standpoint, it appears that SepFormer performs well on noises that impact the SAR domain.

Figure 6.3, 6.4 presents PESQ vs SNR and SI-SNRi, SDRi vs SNR for the same noise types.

We observed that improvements in SI-SNR and SDR were greater for utterances with an SNR

of -5 dB, indicating a more significant enhancement in speech intelligibility and reduction of

distortion than for higher SNR utterances. This pattern is consistent across all noise types.
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Figure 6.3: PESQ, SDRi, SI-SNRi vs SNR of SepFormer enhanced utterances for emergency
vehicle siren, chopper, engine, static-radio, and breathing noise types.
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Figure 6.4: PESQ, SDRi, SI-SNRi vs SNR of SepFormer enhanced utterances for engine,
static-radio, and breathing noise types.
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Conclusion

7.1 General findings

Our work addresses some major challenges that arise in the SAR domain: the lack of speech

data, the need for robustness to SAR noises, and conversational speech. To overcome these

challenges, we have introduced RescueSpeech, a new dataset of speech data in German that

we use to perform robust speech recognition in a hostile noise-filled environment. To achieve

this, we proposed multiple training strategies that involve fine-tuning pre-trained models on

our in-domain data. We tested different self-supervised models (e.g., Wav2Vec2, WavLM, and

Whisper) for speech recognition. Despite leveraging these cutting-edge systems, our best model

only achieves a WER of 29.97% on our test set. This result highlights the significant difficulty

and the urgent need for further research in this crucial domain.

Overall, our work represents a step forward in addressing the challenges of speech recognition

in the SAR domain. By introducing a new dataset, we hope to establish a useful benchmark

and foster more studies in this field.

7.2 Future work

In this work, we have attempted to address most of the challenges as discussed. However,

in the process of SAR data collection, ASR experiments with the RescueSpeech dataset and

difficulties involving speech enhancement with SAR noises, we came across many scopes of

future work. We should consider including channel characteristics during ASR training like

interference noise, radio noise, and distortion as these affect the quality of the audio signal as it

travels from the speaker to the microphone. Speech data pertaining to the SAR domain involves

highly emotional speech which our ASR models did not account for, hence, we should include

highly emotional speech utterances during our ASR training. Additionally, other than the five

SAR noise types discussed in this thesis, there are several noises like foot-stomping, structural

42
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noise due to vibration caused by heavy machinery or chopper blades, and interference noise that

need to be addressed when training the speech enhancement model.

We also find that our RescueSpeech dataset is too small in size to make it operational in real

SAR scenarios. But we also realise that data collection for such a complex domain comes

with various restrictions and difficulties. Therefore, data augmentation techniques can be used

to generate more SAR data, and also attempts shall be made to extend the dataset to other

languages like English, French, Italian etc.
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[4] Dominik Macháček, Jonáš Kratochv́ıl, Sangeet Sagar, Matúš Žilinec, Ondřej Bojar, Thai-

Son Nguyen, Felix Schneider, Philip Williams, and Yuekun Yao. ELITR non-native speech

translation at IWSLT 2020. In Proceedings of the 17th International Conference on Spoken

Language Translation, pages 200–208, Online, July 2020. Association for Computational

Linguistics. doi: 10.18653/v1/2020.iwslt-1.25. URL https://aclanthology.org/2020.

iwslt-1.25.
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Appendix A

Table A.1: Main hyperparameters used in the reported Common Voice experiments.

Task Dataset Technique Experimental Setting

Speech recogni-
tion

Common
Voice10.0

CRDNN
+ seq2seq

Encoder: CRDNN (2 CNNs, 4 Bi-LSTM, 2 DNN
layers)
Features: 40 fbanks
Augmentation: Yes
Pretraining: no
CTC weight: 0.5
Dropout: 0.15 (for both encoder and decoder)
Batchnorm: yes
Number of epochs: 25
Batch size: 8
Learning rate: 1.0
LR scheduler: new bob
LR annealing factor: 0.8
Optimizer: Adadelta
Loss: CTC+NLL Loss
Token type: unigrams
Number of tokens: 1000
Decoder: Attn-GRU (1 layer) + Beam search
(Decoding) Beam size: 80
(Decoding) LM weight: 0.50
(Decoding) CTC weight: 0.0
LM: RNNLM (2 RNN layers, 1 DNN layer)
Training Time: 8h/epoch (RTXA6000-48GB)

Speech recogni-
tion

Common
Voice10.0

Wac2vec2.0/
WavLM +
CTC

Encoder: Wav2vec2.0 /WavLM (Transformer)
Decoder: Greedy decoder
Augmentation: Yes
Pretraining (wav2vec): wav2vec2-large-xlsr-53-
german
Pretraining (wavlm): wavlm-large
Dropout: 0.15 (for both encoder and decoder)
Batchnorm: yes
Number of epochs: 45
Batch size: 8
Learning rate: 1.0
Learning rate wav2vec: 0.0001
LR scheduler: new bob
LR annealing factor: 0.9
Optimizer: Adadelta
Loss: CTC+NLL Loss
Token type: char
Number of tokens: 32
Training Time: 5h 35 min/epoch (RTXA6000-
48GB)
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Table A.2: Main hyperparameters used in the reported DNS4 experiment.

Task Dataset Technique Experimental Setting

Speech enhance-
ment

DNS4 SepFormer Model: SepFormer (Encoder, MaskNet, Decoder)
Sample rate: 16K
Encoder: DualPath CNN
MaskNet: DualPath Model (2 layers)
Decoder: ConvTranspose1d
Mixed precision: True
Epochs: 150
Batch size: 4
Learning rate: 0.00015
Augmentation: Yes (only speedperturb)
Pretraining: no
Dropout: 0.0
Normalization: LayerNorm
Optimizer: Adam
LR scheduler: ReduceLROnPlateau
Loss: SI-SNR (with pit wrapper)
Training Time: 9h/epoch (8 × RTXA6000-48GB)
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