Cross-lingual topic identification in low resource scenarios

Sangeet Sagar, Santosh Kesiraju, Ondřej Glembek, Lukáš Burget

Introduction

Cross-lingual topic ID?

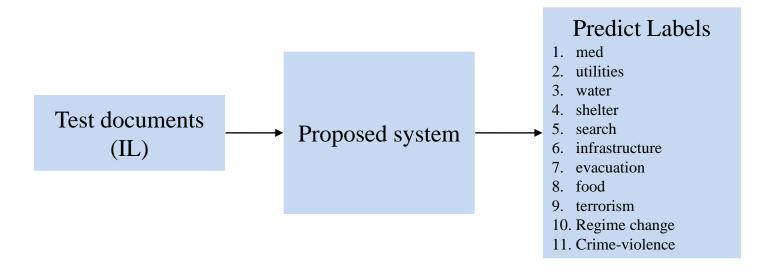
Given

- parallel text (English IL)
- labeled documents (English)

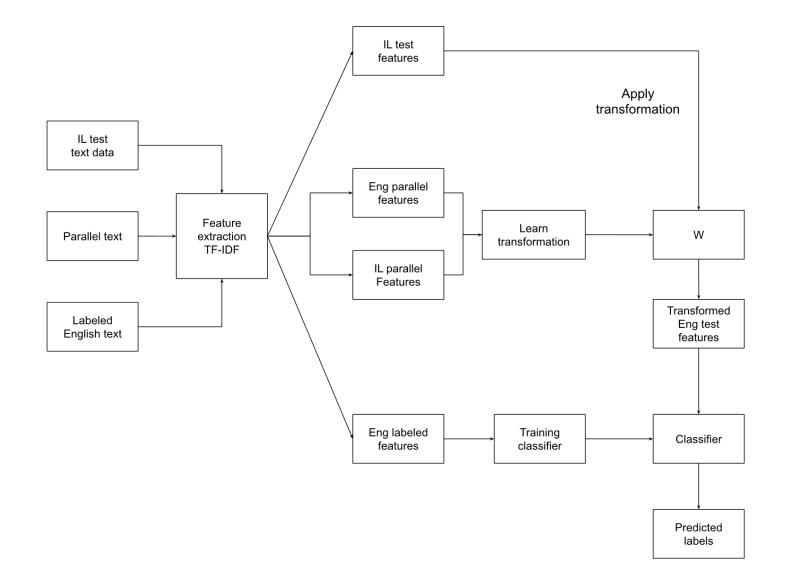
Task

• predict topic labels for test documents (IL)

- IL Incident language/ target language
- English source language



Proposed System



Dataset

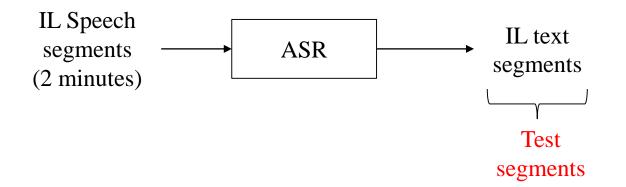
• Parallel text

Data	Language	Number of parallel sentences	Writing system
IL9	Kinyarwanda	29,3559	Latin
-	Zulu	27,4063	Latin
-	Hindi	11,563	Devanagari

Table 1: Details of LORELEI parallel text data

- Training data (English) for topic ID
 - Dataset LDC LORELEI
 - Comprising of 9,017 documents belonging to 11 classes

Source of test documents



- Several speech segments makes one recording which represent one document.
- Objective is to predict topic(s) at segment level.
- ASR system description
 - GMM-HMM based ASR I
 - DNN-HMM based ASR II

Average Precision score

- A measure that combines recall and precision to interpret the performance of classifier
- Computed using

$$AP = \sum_{n} (R_n - R_{n-1})P_n$$

Where P_n and R_n are the precision and recall at the nth threshold.

- A higher AP is an evidence of a better classifier.
- <u>Weighted average precision</u> (WAP) $WAP = \frac{\sum_{n} AP_{n} * C_{n}}{\sum_{n} C_{n}}$

Where AP_n is the average precision score of topic n and C_n is number of documents in that topic.

Feature representation

Bag-of-word (BoW) model



- Tokenization character tri-grams
- Text documents \longrightarrow BoW \longrightarrow Counts \longrightarrow TF-IDF

Multi Label topic ID weighted average precision scores

Longuaga	full-set		
Language	ASR I	ASR II	
Kinyarwanda (IL9)	0.2299	0.1917	
Zulu	0.2221	0.2165	
Hindi	0.1075	0.1411	

Table 2: Multi Label topic ID weighted average precision on LORELEIlanguage packs

Strategy I

Learning transformation on topic related sub-set

- Not all sentences in parallel text are topic related.
- Select topic related text to examine if it helps to learn a better transformation
- Classify English parallel text select ones that are 70% likely to belong to a topic
- Feature transformation using sub-set subset of topic related sentences from parallel text

Comparison of weighted average precision (WAP) scores using transformation learned on full-set and sub-set

Longuago	ful	l-set	sub-set		
Language	ASR I	ASR II	ASR I	ASR II	
Kinyarwanda (IL9)	0.2299	0.1917	0.2564	0.2104	
Zulu	0.2221	0.2165	0.2438	0.2302	
Hindi	0.1075	0.1411	0.0971	0.0984	

Table 3: Multi Label topic ID weighted average precision on LORELEIlanguage packs

Strategy II - Merging segments

- Most segments of a test document have common labels[†].
- Combine all such segments to form a large segment of text.
- Share the prediction scores of the large segments among its child segments.

Longuaga	full-set		sub-set	
Language	ASR I	ASR II	ASR I	ASR II
Kinyarwanda (IL9)	0.4145	0.3497	0.3630	0.2092
Zulu	0.2023	0.2727	0.2537	0.2846
Hindi	0.1410	0.1905	0.1316	0.1249

Table 4: Weighted average precision scores upon combining all sentences of adocument into a single sentence.

[†] C. Liu *et al.*, "Low-Resource Contextual Topic Identification on Speech," *2018 IEEE Spoken Language Technology Workshop (SLT)*, Athens, Greece, 2018, pp. 656-663

Strategy III - Vocabulary selection

- Pick out topic-specific-tokens from English labeled LDC data and explicitly search for them in the parallel text.
- Such tokens are selected from each topics using:

$$S(w,t) = \frac{\sum_{d \in D_t} f_{wd}}{\sum_{\forall d} f_{wd}}$$

Where,

S(w, t) is score of token w in topic t.

 f_{wd} represents frequency of token w in document d.

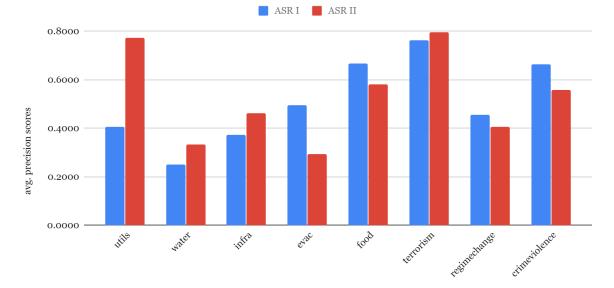
 D_t means all documents belonging to topic t.

Table 5: Weighted average precision upon selection of topic specific tokens

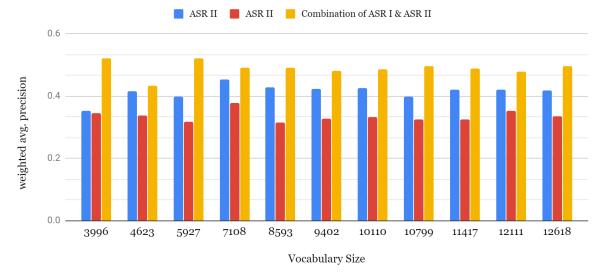
Language	full vocabulary		selected vocabulary	
	ASR I	ASR II	ASR I	ASR II
Kinyarwanda (IL9)	0.4145	0.3497	0.4524	0.3767
Zulu	0.2023	0.2727	0.2033	0.2416
Hindi	0.1410	0.1905	0.1369	0.1629

Strategy III - Merging ASR outputs

- Test documents from ASR I has better performance for some labels while for other labels ASR II shows better results.
- Procedure
 - Examine WAP upon combination of ASR I and ASR II test documents.



IL9 - Baseline average precision scores on using -fold-CV on ASR I and ASR II



IL9 - Comparison of WAP on ASR II, ASR II and Combination of ASR I & ASR II

Table 6: Weighted average precision on combination of test documents

Language	ASR I	ASR II	Combination of ASR I & ASR II
Kinyarwanda (IL9)	0.4524	0.3767	0.5212
Zulu	0.2033	0.2416	0.2206
Hindi	0.1369	0.1629	0.1254

Conclusion and future work

- Kinyarwanda (IL9) showed best results when test documents from ASR I & ASR II are merged.
- However, these strategies did not seem to show significant improve in results for Zulu and Hindi.
- Tremendous amount of work still needs to done for these languages.
- For Hindi, we should probably try syllable tri-grams